China Rice ›› 2025, Vol. 31 ›› Issue (5): 17-25.DOI: 10.3969/j.issn.1006-8082.2025.05.003
• Special Thesis & Basic Research • Previous Articles Next Articles
LU Miao1, ZHANG Weiping1, HU Anrui1,4, WANG Liuxihang1, YANG Shengjie1, ZHAN Yingchao1, WEI Lixing3, FU Shenghui1,4, GUO Lei5, LIU Shuangxi1,2,*()
Received:
2025-05-15
Online:
2025-09-20
Published:
2025-09-11
Contact:
LIU Shuangxi
卢淼1, 张玮平1, 胡安瑞1,4, 王刘西航1, 杨圣杰1, 展颖超1, 魏立兴3, 傅生辉1,4, 国磊5, 刘双喜1,2,*()
通讯作者:
刘双喜
基金资助:
CLC Number:
LU Miao, ZHANG Weiping, HU Anrui, WANG Liuxihang, YANG Shengjie, ZHAN Yingchao, WEI Lixing, FU Shenghui, GUO Lei, LIU Shuangxi. Research Progress of Degradable Film Rice Transplanting Machinery in North China[J]. China Rice, 2025, 31(5): 17-25.
卢淼, 张玮平, 胡安瑞, 王刘西航, 杨圣杰, 展颖超, 魏立兴, 傅生辉, 国磊, 刘双喜. 我国北方可降解膜水稻覆膜插秧机械研究进展[J]. 中国稻米, 2025, 31(5): 17-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.05.003
[1] | 陈品, 徐春春, 纪龙, 等. 2024年我国水稻产业形势分析及2025年展望[J]. 中国稻米, 2025, 31(2):1-5. |
[2] | 宋国智, 曹永本, 王永富, 等. 北方寒地水稻培育壮秧技术[J]. 北方水稻, 2022, 52(4):49-51. |
[3] | 常传义, 吴家安, 高明宇, 等. 有机水稻覆膜栽培技术与机具研究进展[J]. 江苏农业科学, 2022, 50(22):46-55. |
[4] | 高洪儒, 杨传铭, 赵北平, 等. 黑龙江省五常优质稻区2008—2022年水稻育种趋势分析[J]. 中国稻米, 2025, 31(3):87-94. |
[5] | 姚勇, 梁华金, 孙睿, 等. 水稻覆膜机插技术的优缺点、生产成本及经济效益分析[J]. 农业科技创新, 2025(7):35-37. |
[6] | 马宗头. 水稻机械智能化技术发展与应用优势[J]. 农机使用与维修, 2025(6):87-90. |
[7] | LV H S, DONG J Y, JIANG Y, et al. An opportunity for regenerative rice production: Combining plastic film cover and plant biomass mulch with no-till soil management to build soil carbon, curb nitrogen pollution, and maintain high-stable yield[J]. Agronomy, 2019, 9(10):600. |
[8] | 李后勇. 水稻机械化插秧技术及机具分析[J]. 粮油与饲料科技, 2024(10):174-176. |
[9] | 周豪基. 水稻插秧机发展综述[J]. 南方农机, 2022, 53(23):84-85. |
[10] | 阳晖. 日本水稻插秧机技术发展历程[J]. 湖南农机, 2013(10):33. |
[11] | 包春江, 李宝筏. 日本水稻插秧机的研究进展[J]. 农业机械学报, 2004, 35(1):162-166. |
[12] | 蒲红, 刘宇辉, 孟然. 我国水稻栽植机械的研究现状及展望[J]. 佳木斯大学学报(自然科学版), 2003, 21(2):208-211. |
[13] | 马旭, 李泽华, 梁仲维, 等. 我国水稻栽植机械化研究现状与发展趋势[J]. 现代农业装备, 2014(1):30-36+40. |
[14] | 谢舒, 蓝峰, 黎子明, 等. 水稻插秧机的国内外现状及发展趋势[J]. 南方农机, 2009(6):38-40. |
[15] | 潘思辰. 水稻插秧机发展现状及趋势分析[J]. 农业科技与装备, 2016(12):71-72. |
[16] | 于省元, 隋新. 黑龙江垦区水稻栽植机械化现状及发展趋势[J]. 现代化农业, 2020(9):62-63. |
[17] | CHAITANYA D N V, ARUNKUMAR S, AKHILESH G B, et al. Design of rice transplanter[C]// IOP Conference Series: Materials Science and Engineering. India: IOP Publishing, 2018, 377(1):012037. |
[18] | 阎晓光, 李洪, 董红芬, 等. 山西省陵川县玉米秸秆覆盖和地膜覆盖的发展历程与生产现状[J]. 北方农业学报, 2017, 45(2):131-134. |
[19] | 周龙, 王芳, 赵伟丽, 等. 作物地膜覆盖栽培研究进展[J]. 湖北农业科学, 2019, 58(suppl2):75-81. |
[20] | 应伟杰, 王亚梁, 朱德峰, 等. 水稻机械育插秧技术研究进展[J]. 中国稻米, 2024, 30(4):12-16. |
[21] | 邱威扬, 邱贤华, 喻继文, 等. 生物降解热塑性全淀粉塑料研制[J]. 农业工程学报, 2008, 24(8):185-188. |
[22] | 何文清, 刘琪, 李元桥, 等. 生物降解地膜新材料的发展及产业化前景[J]. 生物产业技术, 2017(2):7-13. |
[23] | 刘海东, 尹洪锋, 牛思双. 功能性塑料薄膜在包装领域的应用与发展[J]. 印刷技术, 2015(4):48-50. |
[24] | 刘敏, 黄占斌, 杨玉姣. 可生物降解地膜的研究进展与发展趋势[J]. 中国农学通报, 2008, 24(9):439-443. |
[25] | 益小苏, 沈烈, 石小英. 完全生物降解塑料发展现状[J]. 材料导报, 1994(4):49-53. |
[26] | CARR L G, PARRA D F, PONCE P, et al. Influence of fibers on the mechanical properties of cassava starch foams[J]. Journal of Polymers and the Environment, 2006, 14:179-183. |
[27] | 陈昌杰. 日本功能性高分子薄膜的市场动向[J]. 塑料包装, 2011, 21(1):59-60. |
[28] | 王艺君. 不同地膜覆盖对土壤理化性状及玉米产量的影响[D]. 银川: 宁夏大学, 2022. |
[29] | 邓纯宝. 日本地膜覆盖栽培的现状与动向[J]. 辽宁农业科学, 1982(3):50-52. |
[30] | 范良兵. 淀粉降解塑料的制备及性能的研究[D]. 广州: 华南理工大学, 2010. |
[31] | 吴颖. 新型淀粉膜的制备及其结构和性能的研究[D]. 天津: 天津大学, 2009. |
[32] | 刘陶, 黄晨, 韩晓建, 等. 麻/丝非织造布农用地膜的研制和性能分析[J]. 纺织学报, 2010, 31(6):71-75. |
[33] | 韩永俊, 陈海涛, 刘丽雪, 等. 水稻秸秆纤维地膜制造工艺参数优化[J]. 农业工程学报, 2011, 27(3):242-247. |
[34] | 陈海涛, 竹筱歆, 刘爽. 水稻秸秆纤维基绿色地膜制造工艺参数优化[J]. 农业工程学报, 2018, 34(7):271-279. |
[35] | KASIRAJAN S, NGOUAJIO M. Polyethylene and biodegradable mulches for agricultural applications: a review[J]. Agronomy for Sustainable Development, 2012, 32:501-529. |
[36] | 张鸿超. 秸秆纤维地膜覆盖栽培对土壤环境和作物生长发育的影响[D]. 哈尔滨: 东北农业大学, 2017. |
[37] | GUO L, LIU M J, ZHANG Y N, et al. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system[J]. European Journal of Agronomy, 2018, 92:9-16. |
[38] | 徐蕊, 魏广彬, 张洪海, 等. 全生物降解膜覆盖对有机栽培水稻产量和杂草发生的影响初探[J]. 农业科技通讯, 2023(1):57-60. |
[39] | 邢春秋, 冯天佑, 邵铭泉, 等. 寒地有机水稻覆膜机插栽培技术试验与评价[J]. 中国农机化学报, 2019, 40(6):39-42. |
[40] | 赵娜. 寒地有机水稻覆膜(降解膜)机插技术产量和效益分析[J]. 现代农业, 2020(11):28-29. |
[41] | 肖伟. 寒地薄土层水稻覆膜控制灌溉技术研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
[42] | BREUER U. Plastics from bacteria-natural functions and applications[J]. Biotechnology Journal: Healthcare, Nutrition, Technology, 2010, 5(12):1 351. |
[43] | 张鹏. 全生物降解地膜研究进展及应用现状[J]. 农业开发与装备, 2024(11):151-153. |
[44] | MING X L, CHEN H T. Experiment on cultivation performance of plant fiber-based degradable film in paddy field[J]. Applied Sciences, 2020. |
[45] | 怀宝东, 闫凤超, 曹有鑫, 等. 北方寒地绿色功能型水稻栽培技术试验[J]. 中国稻米, 2021, 27(3):78-82+88. |
[46] | 赵其良, 肖明贤. 日本东北地区水稻旱种地膜覆盖栽培技术[J]. 辽宁农业科学, 1982(3):52-57. |
[47] | 陈凤林, 张维金, 籍质勤. 绿色有机水稻机械覆膜插秧技术[J]. 现代农业, 2015(8):50-51. |
[48] | 张子浩. RGO-6型水稻插秧机秸秆纤维地膜敷设装置设计[D]. 哈尔滨: 东北农业大学, 2014. |
[49] | 于磊, 牟雪雷, 韩休海, 等. 水稻覆膜高速插秧机的设计研究[J]. 农业科技与装备, 2015(6):34-35. |
[50] | 田佳航. 快速插秧机用覆膜机设计及运动仿真研究[D]. 长春: 吉林农业大学, 2017. |
[51] | 田佳航, 谢哲东, 焦海坤. 快速插秧机用覆膜机研究的重要意义与现状[J]. 农业与技术, 2017, 37(7):44-45+54. |
[52] | 吴家安, 许春林. 水稻覆膜插秧及配套机具技术展望[J]. 农机使用与维修, 2018(1):37-38. |
[53] | 单伊尹. 探出开孔式水稻膜上高速插秧机分插机构设计与试验[D]. 哈尔滨: 东北农业大学, 2020. |
[54] | 吴家安, 李向军, 常传义, 等. 2ZMQ-6型高速覆膜插秧机的设计与试验[J]. 农机化研究, 2023, 45(6):100-104. |
[55] | 邢占强. 水田机械覆膜插秧装备设计[J]. 农机使用与维修, 2023(8):17-20. |
[56] | 李泽华, 马旭, 李秀昊, 等. 水稻栽植机械化技术研究进展[J]. 农业机械学报, 2018, 49(5):1-20. |
[57] | 阎晓光, 李洪, 董红芬, 等. 可降解地膜覆盖对土壤水热及春玉米产量的影响[J]. 中国农学通报, 2018, 34(33):32-37. |
[58] | YAO Z S, ZHENG X H, LIU C Y, et al. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films[J]. Scientific Reports, 2017, 7(1):39 855. |
[59] | KOBATA T, UEMUKI N. High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice[J]. Agronomy Journal, 2004, 96(2):406-414. |
[60] | JABRAN K, ULLAH E, HUSSAIN M, et al. Mulching improves water productivity, yield and quality of fine rice under water‐saving rice production systems[J]. Journal of Agronomy and Crop Science, 2015, 201(5):389-400. |
[61] | 胡国辉, 王亚梁, 王军可, 等. 生物可降解膜覆盖对机插水稻氮肥利用率及产量的影响[J]. 生态学杂志, 2020, 39(12):4 005-4 014. |
[62] | 胡国辉, 宋顺奇, 向镜, 等. 生物可降解膜覆盖对机插水稻生长和稻米品质的影响[J]. 中国水稻科学, 2020, 34(2):159-170. |
[63] | 黄立华, 梁正伟, 王明明, 等. 覆膜栽培对盐碱地水稻生长的影响及节水潜力初探[J]. 华北农学报, 2012, 27(suppl 1):106-110. |
[64] | 董瑜皎. 覆膜综合栽培技术对西南丘陵区水稻产量、土壤水热过程和作物氮素利用的影响机理[D]. 北京: 中国农业大学, 2019. |
[65] | 刘淼, 邸树峰, 孙彬, 等. 超薄生物降解地膜降解特征及对有机稻生产和效益的影响[J]. 安徽农业科学, 2021, 49(23):67-69. |
[66] | 祝增荣, 吴良欢, 吴国强, 等. 水稻覆膜旱作对病虫草害发生程度的影响[J]. 植物保护学报, 2000, 27(4):295-301. |
[67] | 韩休海, 邢占强, 于磊, 等. 水稻机械覆膜插秧试验研究[J]. 农机化研究, 2020, 42(12):176-179. |
[68] | 赵欣, 林超文, 徐明桥, 等. 水稻覆膜处理对稻田杂草多样性的影响[J]. 生物多样性, 2009, 17(2):195-200. |
[69] | SONG Z W, WANG G D, HAO Q Y, et al. Evaluation of the comprehensive effects of biodegradable mulch films on the soil hydrothermal flux, root architecture, and yield of drip-irrigated rice[J]. Agronomy, 2025, 15(6):1 292. |
[70] | FERRERO A, MILAN M, DE PALO F, et al. Weed control in rice grown with plastic mulching and drip irrigation system[C]// 18th European Weed Research Society Symposium-EWRS 2018. Kmetijski In titut Slovenije, 2018:218. |
[71] | LIANG H, HU K L, QIN W, et al. Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies[J]. Field Crops Research, 2019, 233:70-79. |
[72] | 董瑜皎, 王昌桃, 袁江, 等. 覆膜栽培显著提高水稻氮肥利用效率——不同氮肥利用率计算方法的多维度比较[J]. 江苏农业科学, 2021, 49(5):85-91. |
[73] | KOBAYASHI K. Paddy weed control and rice cultivation method by recycled paper-mulching[J]. Journal of Agricultural Science, 1995, 50:168-173. |
[74] | WANG X Y, HUANG J, YANG L L, et al. From residue to resource: A physicochemical and microbiological analysis of soil microbial communities through film mulch-enhanced rice straw return strategies[J]. Agronomy, 2024, 14(5):1 001. |
[75] | 熊家欢, 陈惠哲, 徐一成, 等. 水稻覆膜栽培技术研究进展[J]. 作物研究, 2022, 36(1):91-96. |
[76] | LIU M, DANNENMANN M, LIN S, et al. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale[J]. Biogeosciences, 2015, 12(15):4 831-4 840. |
[77] | 范国红, 俞同军. 生物可降解膜覆盖对机插水稻生长发育和经济效益的影响[J]. 基层农技推广, 2023, 11(1):12-14. |
[78] | 熊雪, 曹雪仙, 向镜, 等. 水田覆膜直播压槽与覆盖物对水稻出苗的影响[J]. 中国稻米, 2024, 30(3):63-66. |
[79] | SUN Y, MI W H, SU L J, et al. Controlled-release fertilizer enhances rice grain yield and N recovery efficiency in continuous non-flooding plastic film mulching cultivation system[J]. Field Crops Research, 2019, 231:122-129. |
[80] | ZHANG Y N, LIU M J, DANNENMANN M, et al. Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system[J]. Field Crops Research, 2017, 201:52-59. |
[1] | ZHANG Zhe, HUANG Kunming, CHU Guang. Advantages, Challenges, and Development Strategies of the Double-Season Direct-Seeded Rice Production in China [J]. China Rice, 2025, 31(5): 1-7. |
[2] | LIANG Xuanhe, Li Shanlong, ZHAO Xin, WANG Jianxin, LI Tao, XIN Yuwei, CAO Tiehua. Effects of Reducing Nitrogen and Increasing Density under Long-Term Straw Returning on Soil Quality and Rice Yield [J]. China Rice, 2025, 31(5): 100-104. |
[3] | ZHAO Shuangling, WANG Shengyi, WANG Xiaojuan, MA Chenhu, HAO Yufeng, ZHU Jiangyan, BAO Fangjun. Effects of CO2 Aqueous Solution on the Growth and Yield of Rice under Film Mulching Drip Irrigation [J]. China Rice, 2025, 31(5): 105-107. |
[4] | LI Hui, LAN Tianming, WANG Jingqing, TANG Chenghan, ZHANG Yuping, WANG Yaliang. Effects of Seedling Age and Planting Densities on Growth and Yield Formation of Mechanical Transplanted Early Indica Rice Zhongzu 143 [J]. China Rice, 2025, 31(5): 108-111. |
[5] | LI Dongmei, JIN Meijuan, WANG Haihou, LV Zhiwei, LU Changying, DONG Minghui. Effects of Rice-Morel Rotation on Rice Yield and Quality [J]. China Rice, 2025, 31(5): 112-116. |
[6] | LI Xiaolin, QU Yunhui, DONG Wei, DENG Wei, KUI Limei, TUjian , SHEN Xiqiong. Strengthening the Research and Application of the “Rice +” Model to Promote the Coordinated Development of Grain Crop and Cash Crop in Low-Latitude Plateau Areas [J]. China Rice, 2025, 31(5): 117-120. |
[7] | FENG Yupeng. Inspiration and Suggestions from the Rapid Development of Ratoon Rice in Huoqiu County, China [J]. China Rice, 2025, 31(5): 121-124. |
[8] | LI Huixiu, ZHAO Xinhui, YE Yumeng, LIU Wen, JIN Shihao, FU Zhiqiang, XU Ying, WANG Yue, LONG Pan. Research Progress on Rice Seedling Substrate Based on Different Mechanized Planting Methods [J]. China Rice, 2025, 31(5): 26-32. |
[9] | LI Jie, XU Guiling, FEGN Yuehua, HUANG Yougang. Research Progress in Rice Leaf Lateral Asymmetry [J]. China Rice, 2025, 31(5): 33-38. |
[10] | WU Yajin, LI Yang, WANG Benfu, ZHANG Zhisheng, XIE Yi, ZHANG Zuolin, CHENG Jianping. Research Progress on the Influencing Factors of Regenerated Bud Germination and Growth in Ratoon Rice [J]. China Rice, 2025, 31(5): 39-46. |
[11] | JIANG Xintong, DOU Zhi, LIAO Ping, GAO Hui. Research Progress on Cultivation Techniques for High-Yield and High-Quality of Double-Cropping Late Rice [J]. China Rice, 2025, 31(5): 47-50. |
[12] | TANG Xinxin, ZHANG Zhouna, XIAO Deshun, CHEN Liping, WANG Danying, ZHU Yijun, ZHANG Xiaoguo, XU Chunmei. Effects of Low Temperature and Insufficient Light during the Early Stage of Early Rice on Growth and Development and its Regulatory Techniques [J]. China Rice, 2025, 31(5): 51-57. |
[13] | CHEN Zifang, LI Jintao, CAO YuXian, HOU jun. Eeffects of Foliar Nitrogen Application on Yield and Quality of the Ratoon Crop of Ratoon Rice under Mechanized Harvesting Conditions for the Main Crop [J]. China Rice, 2025, 31(5): 58-64. |
[14] | WEI Renyuan, LI Rongkai, TAN Bin, CUI Maoya, LIU Zhibo, LIU Jiatong, WEI Huanhe, DAI Qigen, XU Ke, CHEN Yinglong. Effects of Foliar Application of Nano-Silicon on Rice Yield and Physiological Characteristics under Salt Stress [J]. China Rice, 2025, 31(5): 65-70. |
[15] | ZHU jianmin, FU Wentao, SUN Wenxia, ZHANG Yuxiang, HUANG Shan, SUN Yanni. Interactive Effects of Soil Fertility and Nitrogen Application Rate on N2O Emissions from Double-Cropping Rice Paddies [J]. China Rice, 2025, 31(5): 71-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||