[1] |
国家统计局. 2022中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
|
[2] |
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5):673-684.
|
[3] |
张洪程, 胡雅杰, 杨建昌, 等. 中国特色水稻栽培学发展与展望[J]. 中国农业科学, 2021, 54(7):1 301-1 321.
|
[4] |
GARCIA-CAPARROS P, LAO T M. The effects of salt stress on ornamental plants and integrative cultivation practices[J]. Scientia Horticulturae, 2018, 240: 430-439.
|
[5] |
LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291.
|
[6] |
顾逸彪, 颜佳倩, 薛张逸, 等. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023(2):67-76.
|
[7] |
MARYAM S, SASAN A, BATOOL H, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses[J]. Plant Cell Reports, 2019, 38(8): 847-867.
|
[8] |
SIMON M, HILLEL F. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?[J]. Frontiers in Plant Science, 2015, 6: 419.
|
[9] |
ULLAH A, ALI I, NOOR J, et al. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential[J]. Frontiers in Plant Science, 2023, 13: 1 081 188.
|
[10] |
DABRAVOLSKI S A, ISAYENKOV S V. The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance[J]. Horticulturae, 2023, 9(2): 230.
|
[11] |
XU B, LONG Y, FENG X Y, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience[J]. Nature Communications, 2021, 12(1): 1 952.
|
[12] |
罗黄颖, 高洪波, 夏庆平, 等. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J]. 中国农业科学, 2011, 44(4):753-761.
|
[13] |
高洪波, 章铁军, 吕桂云, 等. NaCl胁迫下外源γ-氨基丁酸对黄瓜幼苗生长和活性氧代谢的影响[J]. 西北植物学报, 2007, 27(10):2 046-2 051.
|
[14] |
周翔, 吴晓岚, 李云, 等. 盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系[J]. 应用与环境生物学报, 2005, 11(4):412-415.
|
[15] |
张碧茹, 米俊珍, 赵宝平, 等. 外源γ-氨基丁酸缓解燕麦幼苗盐碱胁迫的生理效应[J]. 麦类作物学报, 2024, 44(2):222-229.
|
[16] |
顾逸彪. 不同耐盐性水稻对盐胁迫的响应机制与调控机理研究[D]. 扬州: 扬州大学, 2023.
|
[17] |
邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5):667-678.
|
[18] |
许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础[D]. 扬州: 扬州大学, 2017.
|
[19] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006:221-224.
|
[20] |
李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000:164-168.
|
[21] |
MA Y, WANG P, WANG M, et al. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress[J]. Food Chemistry, 2019, 270: 593-601.
|
[22] |
褚光, 刘洁, 张耗, 等. 超级稻根系形态生理特征及其与产量形成的关系[J]. 作物学报, 2014, 40(5):850-858.
|
[23] |
谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4):176-182.
|
[24] |
JIN Y, ZHI L L, TANG X, et al. The function of GABA in plant cell growth, development and stress response[J]. Phyton: International Journal of Experimental Botany, 2023, 92(8): 2 211-2 225.
|
[25] |
ALJUAID B S, ASHOUR H. Exogenous γ-aminobutyric acid (GABA) application mitigates salinity stress in maize plants[J]. Life, 2022, 12(11): 1 860.
|
[26] |
沙汉景, 胡文成, 贾琰, 等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报, 2017, 43(11):1 677-1 688.
|
[27] |
贺江, 丁颖, 娄向弟, 等. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6):1 045-1 060.
|
[28] |
TAVAKKOLI E, FSTEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2 189-2203.
|
[29] |
TAIBI K, TAIBI F, ABDERRAHIN L A, et al. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L[J]. South African Journal of Botany, 2016, 105: 306-312.
|
[30] |
XIANG L X, HU L P, XU W N, et al. Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress[J]. PLoS One, 2016, 11(10): e0164847.
|
[31] |
JIN X Q, LIU T, XU J J, et al. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis[J]. BMC Plant Biology, 2019, 19: 48.
|
[32] |
NAYYAR H, KAUR R, KAUR S, et al. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J]. Journal of Plant Growth Regulation, 2014, 33: 408-419.
|
[33] |
PODLESAKOVA K, UGENA L, SPICHAL L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. New Biotechnology, 2019, 48: 53-65.
|
[34] |
NAKASHIMA K, FUJITA Y, KATSURA K, et al. Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis[J]. Plant Molecular Biology, 2006, 60: 51-68.
|
[35] |
FUJITA Y, FUJITA M, SHINOZAKI K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants[J]. Journal of Plant Research, 2011, 124: 509-525.
|
[36] |
FUJII H, VERSLUES P E, ZHU J K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 485-494.
|
[37] |
XU Z J, WANG J C, ZHEN W T, et al. Abscisic acid alleviates harmful effect of saline-alkaline stress on tomato seedlings[J]. Plant Physiology and Biochemistry, 2022, 175: 58-67.
|
[38] |
WASZCAK C, CARMODY M, KANGASJARVI J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 2018, 69(1): 209-236.
|
[39] |
齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8):2 741-2 746.
|
[40] |
陈鸿鹏, 谭晓风. 超氧化物歧化酶(SOD)研究综述[J]. 经济林研究, 2007, 25(1):59-65.
|
[41] |
尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007, 23(1):105-110.
|
[42] |
CARILLO P. GABA shunt in durum wheat[J]. Frontiers in Plant Science, 2018, 9: 100.
|
[43] |
KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology, 2021, 325: 73-82.
|
[44] |
ANSARI M I, JALIL S U, ANSARI S A, et al. GABA shunt: A key-player in mitigation of ROS during stress[J]. Plant Growth Regulation, 2021, 94: 131-149.
|
[45] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
|
[46] |
JI J, YUE J Y, XIE T T, et al. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: Involving in abscisic acid and ethylene-signalling pathways[J]. Planta, 2018, 248: 675-690.
|
[47] |
MORI I C, SCHROEDER J I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiology, 2004, 135(2): 702-708.
|
[48] |
SINGH R, PARIHAR P, SINGH S, et al. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives[J]. Redox Biology, 2017, 11: 213-218.
|
[49] |
VIRDI A S, SINGH S, SINGH P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins[J]. Frontiers in Plant Science, 2015, 6: 809.
|
[50] |
高永生, 王锁民, 张承烈. 植物盐适应性调节机制的研究进展[J]. 草业学报, 2003, 12(2):1-6.
|
[51] |
曹岩坡, 代鹏, 戴素英. 盐胁迫对芦笋幼苗生长和体内Na+, K+, Ca2+分布的影响[J]. 西南大学学报(自然科学版), 2014, 36(10):31-36.
|
[52] |
RAHMAN A, NAHAR K, HASANUZZAMAN M, et al. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings[J]. Frontiers in Plant Science, 2016, 7: 609.
|