[1] |
ZHOU H, XIA D, HE Y. Rice grain quality-traditional traits for high quality rice and health-plus substances[J]. Molecular Breeding, 2019, 40(1): 1-17.
|
[2] |
李潜龙, 王慧, 方玉, 等. 我国水稻重要农艺性状分子遗传研究进展及在育种上的应用[J]. 中国稻米, 2021, 27(2):21-27.
|
[3] |
杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展[J]. 华南农业大学学报, 2019, 40(5):203-210.
|
[4] |
WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theoretical & Applied Genetics, 2006, 112(7): 1 258- 1 270.
|
[5] |
WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948.
|
[6] |
XIA D, ZHOU H, LIU R J, et al. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756.
|
[7] |
GAO X Y, ZHANG J Q, ZHANG X J, et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY- like kinase OsGSK3to modulate brassinosteroid signaling[J]. The Plant Cell, 2019, 31(5): 1 077-1 093.
|
[8] |
LIU J F, CHEN J, ZHENG X M, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3(5): 1-7.
|
[9] |
XU C J, LIU Y, LI Y B, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany, 2015, 66(9): 2 611-2 623.
|
[10] |
SHI C L, REN Y L, LIU L L, et al. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiology, 2019, 180(1): 381-391.
|
[11] |
WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954.
|
[12] |
YING J Z, MA M, BAI C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753.
|
[13] |
HU J, WANG Y X, FANG Y X, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1 455-1 465.
|
[14] |
LI Y B, FAN C C, XIGN Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404.
|
[15] |
NEVAME A Y M, EMON R M, MALEK M A, et al. Relationship between high temperature and formation of chalkiness and their effects on quality of rice[J]. BioMed Research International, 2018: 1653721.
|
[16] |
TIAN Z X, QIAN Q, LIU Q Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences, 2009, 106(51): 21 760- 21 765.
|
[17] |
吕军, 姜秀英, 解文孝, 等. 辽宁省不同熟期水稻品质性状分析[J]. 作物杂志, 2020(1):17-21.
|
[18] |
刘利成, 闵军, 刘三雄, 等. 湖南优质稻品种品质指标间的相关性分析[J]. 中国稻米, 2015, 21(1):30-33.
|
[19] |
王刚, 王嘉晨, 李月婷, 等. 辽宁省水稻品种品质差异分析[J]. 辽宁农业科学, 2019(3):13-17.
|
[20] |
LAESSIG R E, DUCKETT E J. Canonical correlation analysis: Potential for environmental health planning[J]. American Journal of Public Health, 1979, 69(4): 353-361.
|
[21] |
吕建群, 刘光春, 任鄄胜, 等. 中籼水稻米质性状与农艺性状的相关分析[J]. 江西农业学报, 2015, 27(3):11-13.
|
[22] |
况浩池, 杨扬, 曾正明, 等. 中等直链淀粉含量籼型杂交水稻组合稻米品质及相关性研究[J]. 中国稻米, 2014, 20(2):25-28.
|
[23] |
王平, 白玉路, 王闵霞, 等. 花香A系列杂交水稻组合产量及米质性状相关及通径分析[J]. 中国稻米, 2017, 23(1):81-85.
|
[24] |
蒋聪, 段玉云, 杨旭昆, 等. 云南省高原粳稻主要农艺性状与产量的多重分析[J]. 江苏农业科学, 2020, 48(21):74-83.
|
[25] |
甘露, 吴佳宏, 刘艳, 等. 杂交稻7个米质性状的变异及相关性分析[J]. 杂交水稻, 2019, 34(2):63-68.
|