China Rice ›› 2022, Vol. 28 ›› Issue (5): 7-13.DOI: 10.3969/j.issn.1006-8082.2022.05.002
• Special Thesis & Basic Research • Previous Articles Next Articles
MO Yifan1, WU Yining1, YU Sibin1,2,*()
Received:
2022-08-13
Online:
2022-09-20
Published:
2022-09-21
Contact:
YU Sibin
通讯作者:
余四斌
基金资助:
CLC Number:
MO Yifan, WU Yining, YU Sibin. Breeding of Green Super Rice and its Perspectives[J]. China Rice, 2022, 28(5): 7-13.
莫伊凡, 吴伊宁, 余四斌. 绿色超级稻品种培育及其发展[J]. 中国稻米, 2022, 28(5): 7-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2022.05.002
[1] | YU S B, ALI J, ZHOU S C, et al. From green super rice to green agriculture: Reaping the promise of functional genomics research[J]. Molecular Plant, 2022, 15(1): 9-26. |
[2] | 张启发. 绿色超级稻培育的设想[J]. 分子植物育种, 2005, 3(5):601-602. |
[3] | WING R A, PURUGGANAN M D, ZHANG Q F. The rice genome revolution: From an ancient grain to Green Super Rice[J]. Nature Reviews: Genetics, 2018, 19(8): 505-517. |
[4] | 余四斌, 熊银, 肖景华, 等. 杂交稻与绿色超级稻[J]. 科学通报, 2016, 61(35):3797-3 803. |
[5] | ALI J, JEWEL Z A, MAHENDER A, et al. Molecular genetics and breeding for nutrient use efficiency in rice[J]. International Journal of Molecular Sciences, 2018, 19(6): 1762. |
[6] | FENG B, CHEN K, CUI Y R, et al. Genetic dissection and simultaneous improvement of drought and low nitrogen tolerances by designed QTL pyramiding in rice[J]. Frontiers in Plant Science, 2018, 9: 306. |
[7] | LI Z K, ALI J. Breeding green super rice (GSR) varieties for sustainable rice cultivation[M]. Cambridge: Burleigh Dodds Science Publishing, 2017: 109-129. |
[8] | 张启发. 绿色超级稻的构想与实践[M]. 北京: 科学出版社, 2009:5. |
[9] | LUO L J, MEI H W, YU X Q, et al. Water-saving and drought-resistance rice: From the concept to practice and theory[J]. Molecular Breeding, 2019, https://doi.org/10.1007/s11032-019-1057-5. |
[10] | YU S B, ALI J, ZHANG C P, et al. Genomic breeding of Green Super Rice varieties and their deployment in Asia and Africa[J]. Theoretical and Applied Genetics, 2020, 133(5): 1427-142. |
[11] | 王文生, 高用明, 徐建龙, 等. “绿色超级稻”助力亚非国家农业生产的可持续发展[J]. 生命科学, 2018, 30(10): 1 090-1 099. |
[12] | WATARU, PEDE V O, MISHRA A K, et al. Assessing the benefits of green super rice in Sub-Saharan Africa: Evidence from Mozambique[J]. Q Open, 2022, 2: 1-23. https://doi.org/10.1093//10.1093/qopen/qoac006. |
[13] | WANG W S, MAULEON R, HU Z Q, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557: 43-49. |
[14] | HUANG F F, JIANG Y R, CHEN T T, et al. New data and new features of the funricegenes (functionally characterized rice genes) database: 2021 update[J]. Rice, 2022, https://doi.org/10.1086/s12284-022-00569-1. |
[15] | WEI X, QIU J, YONG K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding[J]. Nature Genetics, 2021, 53(2): 243-253. |
[16] | ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601: 245-251. |
[17] | GAO M J, HE Y, YIN X, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell, 2021, 184(21): 5 391-5 404. |
[18] | WANG J, ZHOU L, SHI H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361: 1 026-1 028. |
[19] | ZHOU X G, LIAO H C, CHERN M S, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 3 174-3 179. |
[20] | WANG Z Y, ZHOU L, LAN Y, et al. An aspartic protease 47 causes quantitative recessive resistance to rice black-streaked dwarf virus disease and southern rice black-streaked dwarf virus disease[J]. New Phytologist, 2022, 233(6): 2 520-2 533. |
[21] | SHI S J, WANG H Y, NIE L Y, et al. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths[J]. Molecular Plant, 2021, 14(10): 1 714-1 732. |
[22] | GUO J P, XU C X, WU D, et al. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice[J]. Nature Genetics, 2018, 50(2): 297-306. |
[23] | JIA M R, MENG X B, SONG X G, et al. Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice[J]. Cell Discovery, 2022, https://doi.org/10.1038/s41421-022-00413-2. |
[24] | LI J L, ZENG Y W, PAN Y H, et al. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice[J]. New Phytologist, 2021, 231(3): 1 056-1 072. |
[25] | CAO Z B, TANG H W, CAI Y H, et al. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage[J]. Plant Biotechnology Journal, 2022, 20(8): 1 591-1 605. |
[26] | KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2022, 8(1): 53-67. |
[27] | SUN X M, XIONG H Y, JIANG C H, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, https://doi.org/10.1038/s41467-022-31844-w. |
[28] | WEI S B, LI X, LU Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, doi: 10.1126/science.abi8455 |
[29] | LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590: 600-605. |
[30] | MA B, ZHANG L, GAO Q F, et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals[J]. Nature Genetics, 2021, 53(6): 906-915. |
[31] | WU K, WANG S S, SONG W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, doi: 10.1126/science.eaaz2046. |
[32] | XUE W Y, XING Y Z, WENG X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[33] | YAN W H, WANG P, CHEN H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4(2): 319-330. |
[34] | LI Q F, LIU X Y, ZHANG C Q, et al. Rice soluble starch synthase I: Allelic variation, expression, function, and interaction with Waxy[J]. Frontiers in Plant Science, 2018, doi: 10.3389/fpls.2018.01591. |
[35] | ZHANG C Q, YANG Y, CHEN S J, et al. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901. |
[36] | 余四斌, 孙文强, 王记林, 等. 水稻种质资源及其在功能基因组中的应用[J]. 生命科学, 2016, 28(10): 1 122-1 128. |
[37] | WANG Q, SU Q M, NIAN J Q, et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14(6): 1 012-1 023. |
[38] | JIANG H C, HU J, LI Z, et al. Evaluation and breeding application of six brown planthopper resistance genes in rice maintainer line Jin 23B[J]. Rice, 2018, doi: 10.1186/s12284-018-0215-4. |
[39] | JING S L, ZHAO Y, DU B, et al. Genomics of interaction between the brown planthopper and rice[J]. Current Opinion in Insect Science, 2017, 19: 82-87. |
[40] | XIAO N, PAN C H, LI Y H, et al. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice[J]. Genome Biology, 2021, 22(1): 283. |
[41] | YU H H, XIE W B, LI J, et al. A whole-genome SNP array (RICE6K) for genomic breeding in rice[J]. Plant Biotechnology Journal, 2013, 12(1): 28-37. |
[42] | CHEN H D, XIE W, HE H, et al. A high-density SNP genotyping array for rice biology and molecular breeding[J]. Molecular Plant, 2013, 7(3): 541-553. |
[43] | ZHOU D G, CHEN W, LIN Z C, et al. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding[J]. Plant Biotechnology Journal, 2015, 14(2), 638-648. |
[44] | 张浩博, 吴伊宁, 莫伊凡, 等. 绿色超级稻的研究进展与展望[J]. 华中农业大学学报, 2022, 41(1):28-39. |
[45] | LIU Y, MOUSAVI S, PANG Z B, et al. Plant factory: A new playground of industrial communication and computing[J]. Sensors, 2021, 22(1): 147. |
[46] | 李清明, 仝宇欣, 杨晓, 等. 国内外植物工厂研究进展与发展趋势[J]. 农业工程技术, 2022, 42(10):49-53. |
[47] | HU S K, HU X M, HU J, et al. Xiaowei, a new rice germplasm for large-scale indoor research[J]. Molecular Plant, 2018, 11(11): 1 418-1 420. |
[48] | 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10):1129-1 136. |
[49] | TANENTZAP A J, FITCH A, ORLAND C, et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24 689-24 695. |
[50] | SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, doi: 10.1038/s41598-017-02984-7. |
[51] | 赵景, 蔡万伦, 沈栎阳, 等. 水稻害虫绿色防控技术研究的发展现状及展望[J]. 华中农业大学学报, 2022, 41(1):92-104. |
[52] | 杨德生, 黄冠军, 李勇, 等. 水稻氮高效栽培技术、品种改良和生理机制研究进展[J]. 华中农业大学学报, 2022, 41(1):62-75. |
[53] | 张启发. 以“双水双绿”重塑鱼米之乡[N]. 湖北日报,2018-06-13. |
[54] | 张启发. 资源节约型、环境友好型农业生产体系的理论与实践[M]. 北京: 科学出版社, 2015: 351. |
[55] | 张超普, 余四斌, 张启发. 绿色超级稻新品种选育研究进展[J]. 生命科学, 2018, 30(10):1083-1 089. |
[56] | 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9):1245-1 253. |
[57] | 张启发. “双水双绿”产业发展的理论与实践[M]. 北京: 科学出版社, 2021:19-20. |
[58] | WILLETT W, ROCKSTROM J, LOKEN B, et al. Food in the anthropocene: The EAT-lancet commission on healthy diets from sustainable food systems[J]. Lancet, 2019, 393(10170): 447-492. |
[59] | ZHAO M C, LIN Y J, CHEN H. Improving nutritional quality of rice for human health[J]. Theoretical and Applied Genetics, 2020, 133(5): 1 397-1 413. |
[60] | 张启发. 保障粮食安全,促进营养健康:黑米主食化未来可期[J]. 华中农业大学学报, 2021, 40(3):1-2. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||