China Rice ›› 2023, Vol. 29 ›› Issue (6): 10-15.DOI: 10.3969/j.issn.1006-8082.2023.06.003
• Special Thesis & Basic Research • Previous Articles Next Articles
CUI Yuanjiang1, LV Yang1, HU Haitao1, WU Shiqiang2,*(), GUO Longbiao1,*(
)
Received:
2023-07-20
Online:
2023-11-20
Published:
2023-11-21
Contact:
*
崔元江1, 吕阳1, 胡海涛1, 吴世强2,*(), 郭龙彪1,*(
)
通讯作者:
*基金资助:
CLC Number:
CUI Yuanjiang, LV Yang, HU Haitao, WU Shiqiang, GUO Longbiao. Research Progress and Prospect in Molecular Biology of Rice in China in recent Years[J]. China Rice, 2023, 29(6): 10-15.
崔元江, 吕阳, 胡海涛, 吴世强, 郭龙彪. 近年我国水稻分子生物学研究进展[J]. 中国稻米, 2023, 29(6): 10-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2023.06.003
[1] | GAO M J, HE Y, YIN X, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell, 2021, 184(21): 5 391-5 404. |
[2] | ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. |
[3] | LIN H, WANG M Y, CHEN Y, et al. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants[J]. Science Advance, 2022, 8(10): eabg8723. |
[4] | MATSUMOTO H, FAN X, WANG Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72. |
[5] | LI L L, ZHANG H H, YANG Z H, et al. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice[J]. Nature Communication, 2022, 13(1): 6 920. |
[6] | HU X H, SHEN S, WU J L, et al. A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens[J]. Nature Plants, 2023, 9(2): 228-237. |
[7] | ZHAN C H, LEI L, LIU Z X, et al. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance[J]. Nature Plants, 2020, 6(12): 1 447-1 454. |
[8] | XU G J, ZHONG X H, SHI Y L, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity[J]. Science Advance, 2020, 6(48): eabb7719. |
[9] | YANG C, LIU R, PANG J H, et al. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice[J]. Nature Communication, 2021, 12(1): 2 178. |
[10] | LIU Y, ZHANG X, YUAN G X, et al. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(44): e2110751118. |
[11] | LI G B, HE J X, WU J L, et al. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty[J]. Molecular Plant, 2022, 15(11): 1 790-1 806. |
[12] | MENG F W, ZHAO Q Q, ZHAO X, et al. A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance[J]. Cell Reporter, 2022, 39(11): 110 941. |
[13] | KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2022, 8(1): 53-67. |
[14] | ZHANG H, ZHOU J F, KAN Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1 293-1 300. |
[15] | WANG J C, REN Y L, LIU X, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Molecular Plant, 2021, 14(2): 315-329. |
[16] | TANG J Q, TIAN X J, MEI E Y, et al. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels[J]. Plant Cell, 2022, 34(11): 4 495-4 515. |
[17] | XU Y F, ZHANG L, OU S J, et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communication, 2020, 11(1): 5 441. |
[18] | TANG Y, GAO C C, GAO Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental Cell, 2020, 53(3): 272-286. |
[19] | JIA M R, MENG X B, SONG X G, et al. Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice[J]. Cell Discovery, 2022, 8(1):71. |
[20] | GUO X Y, ZHANG D J, WANG Z L, et al. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice[J]. The EMBO Journal, 2023, 42(1): e110518. |
[21] | LI Z T, WANG B, LUO W, et al. Natural variation of codon repeats in COLD11 endows rice with chilling resilience[J]. Science Advance, 2023, 9(1): eabq5506. |
[22] | ZHANG H L, YU F F, XIE P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638): eade8416. |
[23] | SUN X M, XIONG H Y, JIANG C H, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communication, 2022, 13(1): 4 265. |
[24] | LV J, HUANG L Y, ZHANG S L, et al. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice[J]. Nature Communication, 2020, 11(1): 725. |
[25] | YIN W B, XIAO Y H, NIU M, et al. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. Plant Cell, 2020, 32(7): 2 292-2 306. |
[26] | WEI H, WANG X L, HE Y Q, et al. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. |
[27] | WANG L F, CAO S, WANG P T, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J]. Proceedings of National Academy Sciences of the United States of America, 2021, 118(13): e2023981118. |
[28] | LI Q Q, XU F, CHEN Z, et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation[J]. Nature Plants, 2021, 7(8):1108-1 118. |
[29] | XIANG Y H, YU J J, LIAO B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice[J]. Molecular Plant, 2022, 15(12): 1 908-1 930. |
[30] | DENG P, JING W, CAO C Q, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase[J]. Proceedings of National Academy Sciences of the United States of America, 2022, 119(50): e2210338119. |
[31] | QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13): 3 542-3 558. |
[32] | WEI X, QIU J, YONG K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding[J]. Nature Genetics, 2021, 53(2): 243-253. |
[33] | ZHANG F, XUE H Z, DONG X R, et al. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes[J]. Genome Research, 2022, 32(5): 853-863. |
[34] | ZHANG F, HU Z Q, WU Z C, et al. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: Cross-species two-dimensional GWAS reveals the underlying genetics[J]. Plant Cell, 2021, 33(8): 2 538-2 561. |
[35] | SHANG L Q, LI X X, HE H Y, et al. A super pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. |
[36] | LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590(7847): 600-605. |
[37] | CAI S Y, ZHAO X, PITTELKOW C M, et al. Optimal nitrogen rate strategy for sustainable rice production in China[J]. Nature, 2023, 615(7950): 73-79. |
[38] | WU K, WANG S S, SONG W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367 (6478): 641. |
[39] | WEI S B, LI X, LU Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604): 386. |
[40] | ZHANG S, ZHANG Y Y, LI K N, et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice[J]. Current Biology, 2021, 31(4): 671-683. |
[41] | WANG Q, SU Q, NIAN J Q, et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14(6): 1 012-1 023. |
[42] | ZHANG M X, WANG Y, CHEN X, et al. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communication, 2021, 12(1): 735. |
[43] | YANG H, LI Y F, CAO Y W, et al. Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation[J]. Nature Communication, 2022, 13(1): 485. |
[44] | HAN M L, LV Q Y, ZHANG J, et al. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of nitrate reductase 1.2 in rice[J]. Molecular Plant, 2022, 15(1): 167-178. |
[45] | KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7 737): 91-95. |
[46] | WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[47] | WEI X, LIU C, CHEN X, et al. Synthetic apomixis with normal hybrid rice seed production[J]. Molecular Plant, 2023, 16(3): 489-492. |
[48] | VERNET A, MEYNARD D, LIAN Q C, et al. High-frequency synthetic apomixis in hybrid rice[J]. Nature Communication, 2022, 13(1): 7 963. |
[49] | SONG X G, MENG X B, GUO H Y, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 2022, 40(9): 1 403-1 411. |
[50] | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. |
[51] | LIN Q P, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, 39(8): 923-927. |
[52] | CHEN W K, CHEN L, ZHANG X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587): 1 372. |
[53] | XU F, TANG J Y, WANG S X, et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors[J]. Nature Genetics, 2022, 54(12): 1 972-1 982. |
[54] | MA B, ZHANG L, GAO Q F, et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals[J]. Nature Genetics, 2021, 53(6): 906-915. |
[55] | LI J, YOKOSHO K, LIAO H, et al. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice[J]. Nature Plants, 2020, 6(7): 848-859. |
[56] | SUN J, ZHANG G C, CUI Z B, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nature Communication, 2022, 13(1): 5 664. |
[57] | GUAN Z Y, ZHANG Q X, ZHANG Z F, et al. Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 - PHR2 complex[J]. Nature Communication, 2022, 13(1): 1 581. |
[58] | HUANG H J, WANG Y Z, LI L L, et al. Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses[J]. Nature Communication, 2023, 14(1): 737. |
[59] | LI H X, YOU C J, YOSHIKAWA M, et al. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding[J]. Cell Research, 2022, 32(10): 931-945. |
[60] | YU H, LIN T, MENG X B, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5): 1 156-1 170. |
[61] | GUTAKER R M, GROEN S C, BELLIS E S, et al. Genomic history and ecology of the geographic spread of rice[J]. Nature Plants, 2020, 6(5): 492-502. |
[62] | NAGAI K, MORI Y, ISHIKAWA S, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice[J]. Nature, 2020, 584(7819): 109-114. |
[63] | SHIN D, LEE S, KIM T H, et al. Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars[J]. Nature Communication, 2020, 11(1): 2 819. |
[1] | ZHAN Xiaodeng, WANG Kai, CAO Liyong. Advance and Prospect of Rice Genetics and Breeding Research in 2020—2022 in China [J]. China Rice, 2023, 29(6): 1-4. |
[2] | CHENG Can, CAO Liming, ZHU Jianhua, KUANG Huiyun, WANG Zaiman, NIU Fu’an, ZHOU Jihua, CHU Huangwei, ZHANG Anpeng, DENG Hongzhong, LUO Zhongyong, ZHANG Kehong, SUN Bin. Study on Full Mechanized Seed Production Technology with High Yield and Efficienty of Japonica Hybrid Rice Shenyou 28 [J]. China Rice, 2023, 29(6): 103-106. |
[3] | HU Xiangyu, HUANG Zhenbiao, ZHONG Xuhua, LIANG Kaiming, PAN Junfeng, LIU Yanzhuo, FU Youqiang, HU Rui, LI Meijuan, YE Qunhuan. Performance and Cultivation Techniques of Meixiangzhan 2 as Machine-harvested Low Stubble Ratooning Rice in Northern Guangdong [J]. China Rice, 2023, 29(6): 107-109. |
[4] | JIANG Libin, WANG Zhigang, WANG Qinxia, ZHANG Xianping, ZHU Weijun, QIN Yebo, WANG Honghui. Comparison of the Effects of Pot-seedling and Carpet-Seedling Mechanically Transplanted under Different Sowing Dates and Transplanting Dates of Continuous Cropping Late Rice [J]. China Rice, 2023, 29(6): 110-113. |
[5] | SUN Pingyong, SHU Fu, LI Tianchun, XU Guodong, ZHANG Wuhan, HE Qiang, DENG Huafeng. High-yielding Seed Production Techniques of Hybrid Rice Shuangliangyou 132 with High Quality [J]. China Rice, 2023, 29(6): 114-115. |
[6] | CONG Xihan, RUAN Xinmin, SHI Fuzhi, DU Hongyang, LUO Yanchang, LUO Yuxiang, LUO Zhixiang. Breeding and Utilization of Indica Thermo-sensitive Genic Male Sterile Line 7011S with Wide Adaptability in Rice [J]. China Rice, 2023, 29(6): 116-118. |
[7] | ZHANG Xinxin, MING Ke, FENG Guozhong. Advances in Biological Control of Rice Diseases and Insect Pests [J]. China Rice, 2023, 29(6): 16-20. |
[8] | HOU Yuxuan, YU Lin, LI Yang, CHEN Jianghua. Indoor Bacteriostatic Effects of 16 Fungicides against Three Pathogenic Bacteria from Rice [J]. China Rice, 2023, 29(6): 28-32. |
[9] | LONG Junjiang, ZHU Mengyang, ZHOU Dingxiang, GUO Zhangliang, XU Huaqin, TONG Zhijun. Effect of Increasing the Application of Biochar on Antioxidant Enzyme Activity and Yield of Late Rice under Low Temperature Stress at Filling Stage [J]. China Rice, 2023, 29(6): 33-38. |
[10] | BAI Chengxin, GAO Jiacong, ZENG Meng, ZHAO Hongbo, ZHAO Xin, WANG Shuai, WANG Nan. Effects of Three Maillard Reaction Precursors on the Decomposition of Rice Straw and Its Humus Composition [J]. China Rice, 2023, 29(6): 39-43. |
[11] | LIU Jiaxin, WU Zhouzhou, ZHOU Chanchan, A Na, LI Yimeng, WANG Shu. Research Progress of Lodging Characters and Lodging Resistance Pathways in Rice [J]. China Rice, 2023, 29(6): 44-48. |
[12] | ZHENG Guangjie, TAO Yi, SHEN Xinglian, YE Chang, XU Yanan, CHU Guang, XU Chunmei, WANG Danying. Study on Rice Seed Germination and Seedling Emergence and Related Problems in Direct Seeding Production [J]. China Rice, 2023, 29(6): 49-55. |
[13] | ZHU Junlin, CHU Guang, ZHANG Xiufu. Advances and Prospects in Several Hot Research Areas of Rice Cultivation in 2020—2022 in China [J]. China Rice, 2023, 29(6): 5-9. |
[14] | XU Rong, HAN Guangming, YANG Ting, KOU Xiangming, WU Liming, MA Linjie, ZHANG Chenxin, WANG Shouhong. Effects of Water Management Pattern on Productive Efficiency During Paddy Rice-crayfish Co-culture Mode [J]. China Rice, 2023, 29(6): 56-60. |
[15] | JIA Zhen, FU Wentao, WANG Haiyuan, CHEN Jin, ZENG Yongjun, HUANG Shan. Interactive Effects of Different Fertility Levels and Nitrogen Application Rates on Methane Emissions in Early and Late Season of Red Soil Rice Fields [J]. China Rice, 2023, 29(6): 61-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||