[1] |
Summary for policymakers. In: MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge University Press, 2021.
|
[2] |
张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4): 966-975.
|
[3] |
李成伟, 刘章勇, 龚松玲, 等. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968.
|
[4] |
AlEXANDRATOS N, BRUINAMA J. World agriculture towards 2030/2050: The 2012 revision[R]. ESA Working Paper, FAO, Rome, 2012.
|
[5] |
ZHAO H, CHANG J F, HAVLIK P, et al. China’s future food demand and its implications for trade and environment[J]. Nature Sustainability, 2021, 4(12): 1 042-1 051.
|
[6] |
STAVERT A R, SAUNOIS M, CANADELL J G, et al. Regional trends and drivers of the global methane budget[J]. Global Change Biology, 2022, 28(1): 182-200.
|
[7] |
LUO Z B, LIANG X, LAM S K, et al. Hotspots of reactive nitrogen loss in China: Production, consumption, spatiotemporal trend and reduction responsibility[J]. Environmental Pollution, 2021, 248: 117 126.
|
[8] |
GU J F, YANG J C. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management[J]. Crop and Environment, 2022, 1(1): 7-14.
|
[9] |
HOU P F, JIANG Y, YAN L, et al. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis[J]. Science of the Total Environment, 2021, 793: 148 554.
|
[10] |
XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2 292-2 303.
|
[11] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1 008-1 010.
|
[12] |
LINQUIST B A, LIU L, VAN KESSEL C, et al. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake[J]. Field Crops Research, 2013, 154(3): 246-254.
|
[13] |
LIAO P, SUN Y N, ZHU X C, et al. Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis[J]. Agriculture, Ecosystems & Environment, 2021, 322: 107 663.
|
[14] |
DE PAULO E N, GALINDO F S, RABELO F H S, et al. Nitrification inhibitor 3, 4-dimethylpyrazole phosphate improves nitrogen recovery and accumulation in cotton plants by reducing NO3- leaching under 15N-urea fertilization[J]. Plant and Soil, 2021, 469(1): 259-272.
|
[15] |
ALIYU G, LUO J F, DI H J, et al. Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: a meta-analysis of contrasting mitigation scenarios[J]. Pedosphere, 2021, 31(2): 231-242.
|
[16] |
廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响[J]. 核农学报, 2018, 32(9): 1 821-1 830.
|
[17] |
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.
|
[18] |
帅鹏, 杨宙, 胡兰香, 等. 氮肥增效剂对水稻叶片保护酶活性、叶绿素含量及产量的影响[J]. 江西农业学报, 2022, 34(5): 121-126.
|
[19] |
王静, 王允青, 万水霞, 等. 脲酶/硝化抑制剂对沿淮平原糯稻养分吸收利用的影响[J]. 江苏农业学报, 2020, 36(1): 77-82.
|
[20] |
刘立军, 周沈琪, 刘昆, 等. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
|
[21] |
LI X L, ZHANG X Y, XU H, et al. Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide[J]. Nutrient Cycling in Agroecosystems, 2009, 85(1): 31-40.
|
[22] |
BODELIER P L, ROSLEV P, HENCKEL T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421-424.
|
[23] |
HAHN A P, ARTH I R, FRENZEL P. Effects of ammonium-based fertilisation on microbialprocesses involved in methane emission from soilsplanted with rice[J]. Biogeochemistry, 2000, 51(3): 225-257.
|
[24] |
ZHANG A P, MA J, YANG Y T. et al. Achieving low methane and nitrous oxide emissions with high economic incomes in a rice-based cropping system[J]. Agricultural and Forest Meteorology, 2018, 259: 95-106.
|
[25] |
JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4 728-4 738.
|
[26] |
BUTTERBACH-BAHL K, BAGGS ELIZABETH M, DANNENMANN M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368(1621): 20 130 122.
|
[27] |
李香兰, 徐华, 蔡祖聪. 氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展[J]. 土壤学报, 2009, 46(5): 917-924.
|
[28] |
LI J, WANG S, LUO J, et al. Effects of biochar and 3, 4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils[J]. Journal of Soils and Sediments, 2021, 21(2): 1 089-1 098.
|
[29] |
崔磊, 李东坡, 武志杰, 等. 不同硝化抑制剂对红壤氮素硝化作用及玉米产量和氮素利用率的影响[J]. 应用生态学报, 2021, 32(11): 3 953-3 960.
|