China Rice ›› 2024, Vol. 30 ›› Issue (3): 1-9.DOI: 10.3969/j.issn.1006-8082.2024.03.001
• Special Thesis & Basic Research • Next Articles
PAN Lin1,2,#(), MI Chunxia2,#(
), XU Qingshan1, WEI Qianqian1,3, KONG Yali1, ZHU Lianfeng1, TIAN Wenhao1, ZHU ChunQuan1,*(
), ZHANG Junhua1,*(
)
Received:
2023-12-19
Online:
2024-05-20
Published:
2024-05-20
Contact:
* zhangjunhua@caas.cn,zhuchunquan@caas.cn
About author:
#Co-first author: 236198425@qq.com,swxmcx@126.com
潘林1,2,#(), 弥春霞2,#(
), 徐青山1, 魏倩倩1,3, 孔亚丽1, 朱练峰1, 田文昊1, 朱春权1,*(
), 张均华1,*(
)
通讯作者:
* zhangjunhua@caas.cn,zhuchunquan@caas.cn
作者简介:
#共同第一作者:236198425@qq.com,swxmcx@126.com
基金资助:
CLC Number:
PAN Lin, MI Chunxia, XU Qingshan, WEI Qianqian, KONG Yali, ZHU Lianfeng, TIAN Wenhao, ZHU ChunQuan, ZHANG Junhua. Research Progress on Phosphorus Solubilization Mechanism of Phosphorus Solubilizing Bacteria and Its Application in Rice Production[J]. China Rice, 2024, 30(3): 1-9.
潘林, 弥春霞, 徐青山, 魏倩倩, 孔亚丽, 朱练峰, 田文昊, 朱春权, 张均华. 解磷细菌解磷机制研究进展及其在水稻上的应用[J]. 中国稻米, 2024, 30(3): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2024.03.001
[1] | SULEMAN M, YASMIN S, RASUL M, et al. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9): e0204408. |
[2] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1):1-7. |
[3] | ADNAN M, SHAH Z, FAHAD S, et al. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils[J]. Scientific Reports, 2018, 8(1): 4 339. |
[4] | 梅言, 戴传超, 贾永. 外生菌根真菌及其菌根辅助细菌协同解磷的研究进展[J]. 生态学杂志, 2022, 41(8):1 619-1 627. |
[5] | 余旋. 四川核桃主产区根际解磷细菌研究[D]. 成都: 四川农业大学, 2011. |
[6] | 王义, 贺春萍, 郑肖兰, 等. 土壤解磷微生物研究进展[J]. 安徽农学通报, 2009, 15(9):60-64. |
[7] | 张芮瑞. 耐高温解磷微生物的筛选及解磷机制的初探[D]. 贵阳: 贵州大学, 2020. |
[8] | NICHOLAS O, RICHARD D L, SAMUEL K, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates[J]. Frontiers in Microbiology, 2015, 6: 745. |
[9] | 张云翼, 邹碧莹. 土壤解磷细菌的研究进展[J]. 现代农业科技, 2008(15):182-184. |
[10] | 孙亚钦, 叶盛嘉, 范国安, 等. 麦田土壤解磷细菌的筛选及其解磷能力研究[J]. 西北农业学报, 2022, 31(3):379-387. |
[11] | LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1 600-1 613. |
[12] | 杨春波. 油松根围土壤中解有机磷细菌的研究[D]. 呼和浩特: 内蒙古农业大学, 2014. |
[13] | 马春浩. 解磷微生物及其应用研究综述[J]. 安徽农学通报, 2007, 13(4):34-36. |
[14] | PAN L, CAI B. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects[J]. Microorganisms, 2023, 11(12): 2 904. |
[15] | GERRETSEN F C. The influence of micro-organism on the phosphate intaken by the plant[J]. Plant & Soil, 1948, 1: 51-81. |
[16] | 黄雪娇, 王晗, 李振轮. 解磷微生物的研究进展[J]. 安徽农业科学, 2013, 41(19):8 083-8 084. |
[17] | 曾汇文, 李倩如, 王雅士, 等. 土壤解磷细菌解磷机制及其促生作用综述[J]. 湘南学院学报, 2022, 43(2):12-20. |
[18] | 张进良, 张霁. 解磷微生物在农业应用中的研究进展[J]. 商丘师范学院学报, 2014, 30(12):70-73. |
[19] | 谢金宏. 野生稻根际细菌改良盐碱地及水稻促生的研究[D]. 长春: 吉林农业大学, 2020. |
[20] | 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用[J]. 应用生态学报, 2020, 31(9):2 923-2 934. |
[21] | CHEN J Q, ZHAO G Y, WEI Y H, et al. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings[J]. Scientific Reports, 2021, 11(1): 9 081. |
[22] | PRAKASH J, ARORA N K. Phosphate-solubilizing Bacillus sp. enhances growth phosphorus uptake and oil yield of Mentha arvensis L[J]. 3 Biotech, 2019, 9(4): 126. |
[23] | KIM J H, KIM S J, NAM I H. Effect of treating acid sulfate soils with phosphate solubilizing bacteria on germination and growth of tomato (Lycopersicon esculentum L.)[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 8 919. |
[24] | 刘春菊, 杜传印, 梁子敬, 等. 高效解磷细菌菌株CT45-1的鉴定及其对烟草的促生作用[J]. 山东农业科学, 2019, 51(4):74-78. |
[25] | 肖坤, 崔延, 高丹阳, 等. 核桃根际解磷细菌的筛选及对核桃促生作用研究[J]. 河北农业大学学报, 2018, 41(5):49-54. |
[26] | 戴沈艳, 申卫收, 贺云举, 等. 一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果[J]. 应用与环境生物学报, 2011, 17(5):678-683. |
[27] | 李伟, 王金亭. 枯草芽孢杆菌与解磷细菌对苹果园土壤特性及果实品质的影响[J]. 江苏农业科学, 2018, 46(3):140-144. |
[28] | 李乐, 孙海, 刘政波, 等. 一株人参根区解磷细菌的筛选、鉴定及对人参生长的影响[J]. 中国土壤与肥料, 2017(6):163-170. |
[29] | 林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布[J]. 土壤与环境, 2000, 9(1):34-37. |
[30] | 李春越, 薛英龙, 王益, 等. 长期施肥对黄土旱塬农田土壤氮素生理菌群和解磷菌的影响[J]. 生态学杂志, 2020, 39(11):3 658-3 667. |
[31] | 刘洁雯, 冯曾威, 朱红惠, 等. 柑橘园土壤中解磷细菌多样性及其功能潜力分析[J]. 生物资源, 2020, 42(5):568-575. |
[32] | 尹瑞龄. 我国旱地土壤的溶磷微生物[J]. 土壤, 1988(5):243-246. |
[33] | 春雪, 赵雨森, 辛颖, 等. 大兴安岭重度火烧迹地恢复后土壤磷形态与解磷细菌分布特征[J]. 应用生态学报, 2020, 31(2):388-398. |
[34] | 李明, 毕江涛, 王静. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 2020, 40(4):1 316-1 330. |
[35] | 赵小蓉, 林启美, 孙焱鑫, 等. 玉米根际与非根际解磷细菌的分布特点[J]. 生态学杂志, 2001, 20(6):62-64. |
[36] | 朱颖, 库永丽, 刘金良, 等. 黄土高原天然和人工油松林根际土壤解磷细菌群落特征及其功能[J]. 应用生态学报, 2021, 32(9):3 097-3 106. |
[37] | 林燕青, 吴承祯, 洪伟, 等. 解磷菌的研究进展[J]. 武夷科学, 2015, 31:161-169. |
[38] | OCHOA-LOZA F J, ARTIOLA J F, MAIER R M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant[J]. Journal of Environmental Quality, 2001, 30(2): 479-485 |
[39] | 叶国平, 梁锦锋. 解磷细菌(PSB)解磷机理及应用研究进展[J]. 安徽农学通报, 2007, 13(9):53-54. |
[40] | CHENG G C, HE Z L, WANG Y J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere, 2004, 14(1): 9-15. |
[41] | 王雪菲. 解磷细菌YL6在小白菜植株中的定殖及促生机制研究[D]. 杨凌: 西北农林科技大学, 2019. |
[42] | QURBAN A P, UMME A N, SHAMSHUDDIN J, et al. Effect of different Al concentrations on the PSB population (a) without plant, (b) with plant system[J]. PLoS One, 2014. |
[43] | 林英, 司春灿, 韩文华, 等. 解磷微生物研究进展[J]. 江西农业学报, 2017, 29(2):99-103. |
[44] | 孙合美. 水稻根际溶磷菌的溶磷效应及对植物的促生作用[D]. 长春: 吉林农业大学, 2016. |
[45] | 晋婷婷, 任嘉红, 刘瑞祥. 南方红豆杉根际解有机磷细菌的鉴定及其解磷特性和促生作用研究[J]. 西北植物学报, 2016, 36(9):1 819-1 827. |
[46] | 陈丹阳, 李汉全, 张炳火, 等. 两株解磷细菌的解磷活性及作用机制研究[J]. 中国生态农业学报, 2017, 25(3):410-418. |
[47] | KU Y L, XU G Y, TIAN X H, et al. Root colonization and growth promotion of soybean wheat and Chinese cabbage by Bacillus cereus YL6[J]. PLoS One, 2018, 13(11) : e0200181. |
[48] | SHEN M C, LI J G, DONG Y H, et al. Profiling of plant growth-promoting metabolites by phosphate-solubilizing bacteria in maize rhizosphere[J]. Plants (Basel, Switzerland), 2021, 10(6): 1 071. |
[49] | 张芮瑞. 耐高温解磷微生物的筛选及解磷机制的初探[D]. 贵阳: 贵州大学, 2020. |
[50] | 韩雪娇, 曾庆伟, 赵玉萍. 杨树根际解无机磷细菌Mp1-Ha4的鉴定及其解磷机理[J]. 生物技术通报, 2020, 36(3):141-147. |
[51] | MUHAMMAD T, UMAIRA K I, MUHAMMAD L, et al. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate[J]. Brazilian Journal of Microbiology, 2018, 49(1): 15-24. |
[52] | 张云霞, 雷鹏, 许宗奇, 等. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响[J]. 江苏农业学报, 2016, 32(5):1 073-1 080. |
[53] | 刘胜亮, 朱舒亮, 祁先慧, 等. 四株解磷菌分泌有机酸与溶解磷酸三钙能力的研究[J]. 新疆农业科学, 2017, 54(6):1 114-1 121. |
[54] | 刘思岑. 新疆昌吉市土壤中解磷菌的分离及其在园艺植物中解磷效果的探究[D]. 太原: 山西农业大学, 2019. |
[55] | YAHYA M, ISLAM E U, RASUL M, et al. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Frontiers in Microbiology, 2021, 12: 744 094. |
[56] | HE D L, WAN W J. Phosphate-solubilizing bacterium acinetobacter pittii gp-1 affects rhizosphere bacterial community to alleviate soil phosphorus limitation for growth of soybean (Glycine max)[J]. Frontiers in Microbiology, 2021, 12: 737 116. |
[57] | MAHDI I, FAHSI N, HAFIDI M, et al. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from Chenopodium quinoa Willd[J]. Microorganisms, 2020, 8(6): 948. |
[58] | LI G X, WU X Q, YE J R, et al. Characteristics of organic acid secretion associated with the interaction between Burkholderia multivorans WS-FJ9 and poplar root system[J]. BioMed Research International, 2018: 9 619 724. |
[59] | BRITO L F, LOPEZ M G, STRAUBE L, et al. Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: Gene expression and physiological functions[J]. Frontiers in Microbiology, 2020, 11: 588 605. |
[60] | 魏喜喜, 杨智鹏, 马路婷, 等. 枣树根际解磷菌P7的溶磷特性[J]. 经济林研究, 2021, 39(3):122-133. |
[61] | 虞伟斌, 杨兴明, 沈其荣, 等. K3解磷菌的解磷机理及其对缓冲容量的响应[J]. 植物营养与肥料学报, 2010, 16(2):354-361. |
[62] | 管国强, 李倩, 季蓉蓉, 等. 1株溶磷细菌P0417的溶磷机制[J]. 江苏农业科学, 2015, 43(10):432-435. |
[63] | 伊鋆, 高晓蓉, 安利佳. 产气肠杆菌PSB28的解磷机理研究[J]. 中国农学通报, 2011, 27(27):245-249. |
[64] | 林英, 司春灿, 冯唐锴, 等. 不同碳氮钾源对香椿根际解磷菌溶磷效果的影响[J]. 北方园艺, 2018(20):1-7. |
[65] | 刘荣林, 蔡柏岩, 葛菁萍. 丛枝菌根真菌、根瘤菌和解磷细菌之间相互作用的研究进展[J]. 中国农学通报, 2020, 36(35):22-27. |
[66] | 韩雪娇. 杨树根际土壤解磷细菌的筛选、解磷特性及其油菜促生效应研究[D]. 淮安: 淮阴工学院, 2020. |
[67] | SASHIDHAR B, PODILE A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase[J]. Journal of Applied Microbiology, 2010, 109: 1-12. |
[68] | LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1 600-1 613. |
[69] | AN R, MOE LUKE A. Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440[J]. Applied and Environmental Microbiology, 2016, 82(16): 4 955-4 964. |
[70] | MULLEN M D. Phosphorus in soils: Biological interactions[J]. Encyclopedia of Soils in the Environment, 2005: 210-216. |
[71] | XIE J G, YAN Z Q, WANG G F, et al. A bacterium isolated from soil in a karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Frontiers in Microbiology, 2021, 11: 625 450. |
[72] | XIE J B, SHI H W, DU Z L, et al. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species[J]. Scientific Reports, 2016, 6: 21 329. |
[73] | DING Y Q, YI Z L, FANG Y, et al. Multi-omics reveal the efficient phosphate-solubilizing mechanism of bacteria on rocky soil[J]. Frontiers in Microbiology, 2021, 12: 761 972. |
[74] | TRIPURA C, SVDHAKAR REDDY P, REDDY M K, et al. Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of enterobacteriaceae[J]. Indian Journal Microbiology, 2007, 47:126-131. |
[75] | 郭艺鹏. 枣根际解磷细菌的筛选及其解磷机理研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
[76] | LIU Y Q, WANG Y H, KONG W L, et al. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. AMB Express, 2020, 10(1): 108. |
[77] | YADAV K, KUMAR C, ARCHANA G, et al. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols[J]. PLoS One, 2014, 9(4): e92400. |
[78] | ADHIKARY H, SANGHAVI P B, MACWAN S R, et al. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads[J]. PLoS One, 2014, 9(9): e107554. |
[79] | 罗利均. 蜡状芽孢杆菌S458-1解磷机理研究及变异菌选育[D]. 重庆: 西南大学, 2021. |
[80] | MULLANEY E J, ULLAH A H, TURNER B, et al. Phytases: Attributes, catalytic mechanisms and applications[J]. Inositol Phosphates: Linking Agriculture and the Environment, 2006: 97-110. |
[81] | VALEEVA L R, NYAMSUREN C, SHARIPOVA M R, et al. Heterologous expression of secreted bacterial BPP and HAP phytases in plants stimulates Arabidopsis thaliana growth on phytate[J]. Frontiers in Plant Science, 2018, 9: 186. |
[82] | NEAL A L, ROSSMANN M, BREARLEY C, et al. Land-use influences phosphatase gene microdiversity in soils[J]. Environmental Microbiology, 2017, 19(7): 2 740-2 753. |
[83] | HEGYI A, NGUYEN T B K, POSTA K. Metagenomic analysis of bacterial communities in agricultural soils from vietnam with special attention to phosphate solubilizing bacteria[J]. Microorganisms, 2021, 9(9): 1 796. |
[84] | PANHWAR Q A, NAHER U A, SHAMSHUDDIN J, et al. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth[J]. PLoS One, 2014, 9(10): e97241. |
[85] | DUARAH I, DEKA M, SAIKIA N, et al. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation[J]. 3 Biotech, 2011, 1(4): 227-238. |
[86] | 滕泽栋. 解磷菌协同铁基材料对铅污染土壤的修复作用及机制研究[D]. 北京: 北京林业大学, 2020. |
[87] | 董俊伟. 功能菌剂复配对邻苯二甲酸二丁酯污染土壤的修复研究[D]. 哈尔滨: 东北农业大学, 2017. |
[88] | ZHANG C A, CHEN H M, DAI Y, et al. Isolation and screening of phosphorus solubilizing bacteria from saline alkali soil and their potential for Pb pollution remediation[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1 134 310. |
[89] | 魏烈群. 荣成天鹅湖解磷菌的分离筛选及其对沉积物磷释放的影响[D]. 烟台: 烟台大学, 2021. |
[1] | WU Menyin, CAI Wei, ZHONG Xiaohan, YANG Jianchang, LIU Lijun, ZHANG Weiyang. Research Advances in High Temperature Stress on the Grain-filling and Quality of Rice and Its Mechanism [J]. China Rice, 2024, 30(3): 10-17. |
[2] | CHEN Jun, ZHOU Hong, BAO Zuda, DING Yangdong, DAI Xiaping, ZHANG Sheng. Research on the Water-Upland Rotation Model of “Facility Melon-Rice” [J]. China Rice, 2024, 30(3): 102-104. |
[3] | YAN Qiuping, KANG Fuli, ZHANG YangJun, SUN Xingqiang, DENG Yanyan, ZHANG Guowen. Breeding and Application of Three Line Hybrid Late Indica Rice Huashengyou 21 Simiao with High Quality and Long Grain [J]. China Rice, 2024, 30(3): 105-106. |
[4] | FANG Haojun, ZHOU Xiyue. Several Design Ideas for Revitalizing and Empowering Rural Recreation Industry with Rice Cultural Heritage [J]. China Rice, 2024, 30(3): 107-112. |
[5] | SHAO Di, DING Zijuan, HU Ren, XIAO Dakang, HOU Jun, ZHANG Xin, XU Xiao, FANG Hui, GUAN Yu, LI Bei, JIANG Tian, ZHANG Weifeng. Effects of New High-efficiency Green Nitrogen Fertilizer Management on Rice Yield Formation, Nitrogen Utilization and Ammonia Volatilization Loss [J]. China Rice, 2024, 30(3): 18-25. |
[6] | ZHAO Chenyun, WANG Jiaqi, ZHAO Zhiping, GAO Tongmei, PENG Ting, ZHANG Jing, ZHAO Yafan, ZHAO Quanzhi. Effects of Soil Moisture on Soil Respiration and Root Article Number in Upland Rice [J]. China Rice, 2024, 30(3): 26-31. |
[7] | YANG Yuncheng, ZENG Chunli, YAO Feifei, SUN Yanbo, YANG Zipeng, CHEN Hongfei. Effects of the Application of Bud-promoting Fertilizers in the First Season of Ratooning Rice on the Growth and Development of Axillary Buds at Different Nodes and the Carbon and Nitrogen Content [J]. China Rice, 2024, 30(3): 32-38. |
[8] | TAN Biao, REN Muyao, YANG Zhengpeng, XU Jiayi, ZHENG Huabin, TANG Qiyuan, WANG Weiqin. Effects of GA3 Priming and KNO2 Priming on the Seedling Establishment, Starch Metabolism and Respiratory Metabolism of Rice [J]. China Rice, 2024, 30(3): 40-47. |
[9] | LIU Fuqiang, XIANG Jun, ZHENG Huabing, WANG Weiqin, CHEN Yuanwei, QIN Bin, WU Wenge, TANG Qiyuan. Effects of Fertilization and Sowing Rates on Weed Occurrence During the Seedling Stage and Yield of Water Direct Seeding Rice [J]. China Rice, 2024, 30(3): 48-52. |
[10] | YAN Song, GAO Yang, GUAN Lijun, LI Jialei, WANG Hunlun, LI Bo, ZHOU Ye, CHEN Kaixin, LU Shuwen. Study on the Production Method of Germinated Brown Rice of Pre-cooking [J]. China Rice, 2024, 30(3): 53-58. |
[11] | LI Chao, HE Bing, WANG Xiaohang, LANG Hong, WU Xiaoyang, YAO Liang, LUO Liqiang, YANG Deliang, WANG Shuai, CHEN Dianyuan, YANG Guangbin. Response Mechanisms of Rice Under Flooding Stress in the Northeast Regions and Disaster Mitigation Measures [J]. China Rice, 2024, 30(3): 59-62. |
[12] | XIONG Xue, CAO Xuexian, XIANG Jing, CHEN Huizhe, WU Hui, ZHANG Yikai, WANG Yaliang, WANG Zhigang, WANG Jingqing, XU Yicheng, ZHAO Fujian, ZHANG Yuping. Effects of Film Mulching Direct Seeding Groove and Mulch on Emergence of Rice [J]. China Rice, 2024, 30(3): 63-66. |
[13] | XING Pipeng, HE Zhenzhen, ZHANG Zhen, LUO Haowen, ZHANG Yingying, DENG Sicheng, MO Zhaowen, PAN Shenggang, TIAN Hua, DUAN Meiyang, QI Jianying, TANG Xiangru. Effects of Spraying Methyl Jasmonate at Seedling Stage on Aroma of Fragrant Rice Xiangyaxiangzhan [J]. China Rice, 2024, 30(3): 67-71. |
[14] | FANG Wei, LI Huanhuan, LIN Manting. Investigation and Thinking on the Development of County Grain Production Trusteeship in Main Marketing Areas——A Case Study of Dongyuan County, Guangdong Province [J]. China Rice, 2024, 30(3): 72-77. |
[15] | ZHANG Yaoyuan, HU Xingcheng, SUN Dong, YANG Qian, WU Huiyang, GUO Wei, XU Qiang, GAO Hui, DOU Zhi. Main Problems and Countermeasures of Direct Seeding Rice Planting in Jiangsu Province——A Survey Research Based on Question and Answer Data from “Nongjiyun” APP [J]. China Rice, 2024, 30(3): 78-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||