China Rice ›› 2024, Vol. 30 ›› Issue (5): 19-29.DOI: 10.3969/j.issn.1006-8082.2024.05.003
• Special Thesis & Basic Research • Previous Articles Next Articles
JIA Bin1,2(), CHEN Ke2, YE Chanjuan2, GUO Jie2, ZHOU Xinqiao2, CHEN Dagang2, LIU Juan2, JIANG Shu3, LIU Guanming1,*(
), LIU Chuanguang2,*(
)
Received:
2024-07-23
Online:
2024-09-20
Published:
2024-09-12
Contact:
*About author:
First author contact:1st author: aij0721@163.com
贾彬1,2(), 陈可2, 叶婵娟2, 郭洁2, 周新桥2, 陈达刚2, 刘娟2, 姜姝3, 刘冠明1,*(
), 刘传光2,*(
)
通讯作者:
*作者简介:
第一联系人:第一作者:aij0721@163.com
基金资助:
CLC Number:
JIA Bin, CHEN Ke, YE Chanjuan, GUO Jie, ZHOU Xinqiao, CHEN Dagang, LIU Juan, JIANG Shu, LIU Guanming, LIU Chuanguang. Progress in the Establishment of Rice Leaf Morphology and Molecular Mechanism[J]. China Rice, 2024, 30(5): 19-29.
贾彬, 陈可, 叶婵娟, 郭洁, 周新桥, 陈达刚, 刘娟, 姜姝, 刘冠明, 刘传光. 水稻叶形态的建成及分子机制研究进展[J]. 中国稻米, 2024, 30(5): 19-29.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2024.05.003
[1] | 徐佳利, 周太东. 全球粮食危机与中国应对策略[J]. 国际经济合作, 2024, 40(2):32-43+92. |
[2] | HE P, WANG X W, ZHANG X B, et al. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa)[J]. BMC Plant Biology, 2018, 18: 1-11. |
[3] | 许娜, 徐铨, 徐正进, 等. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7):1735-1 746. |
[4] | 黄耀祥. 水稻超高产育种研究[J]. 作物杂志, 1990(4):1-2. |
[5] | 杨守仁. 水稻超高产育种的进展[J]. 作物杂志, 1990(2):1-2. |
[6] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997(6):4-9. |
[7] | 陈友订, 刘传光, 周新桥, 等. 华南双季超级籼稻动态株型育种理论研究与应用[J]. 广东农业科学, 2019, 46(9):8-17. |
[8] | 蔡晶, 王晓光, 季芝娟, 等. 水稻叶片形态的遗传与分子生物学研究进展[J]. 中国稻米, 2008, 14(6):5-11. |
[9] | SHI Z Y, WANG J, WAN X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226: 99-108. |
[10] | YUAN S, LI Y, PENG S B. Leaf lateral asymmetry in morphological and physiological traits of rice plant[J]. PLoS One, 2015, 10(6): e0129832. |
[11] | 黄海. 植物叶发育调控机理研究的进展[J]. 植物学通报, 2003(4):416-422. |
[12] | BAR M, ORI N. Leaf development and morphogenesis[J]. Development, 2014, 141(22): 4 219-4 230. |
[13] | GONZALEZ N, VANHAEREN H, INZÉD. Leaf size control: Complex coordination of cell division and expansion[J]. Trends in Plant Science, 2012, 17(6): 332-340. |
[14] | HAY A, TSIANTIS M. A KNOX family tale[J]. Current Opinion in Plant Biology, 2009, 12(5): 593-598. |
[15] | TSUDA K, KURATA N, OHYANAGI H, et al. Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice[J]. The Plant Cell, 2014, 26(9): 3 488-3 500. |
[16] | CHEN K, GUO T, LI X M, et al. NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice[J]. BMC Plant Biology, 2019, 19: 1-18. |
[17] | CHEN Z C, YAMAJI N, FUJII-KASHINO M, et al. A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice[J]. Plant Physiology, 2016, 171(1): 494-507. |
[18] | MA N, WANG Y, QIU S, et al. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension[J]. PLoS One, 2013. |
[19] | ISHIMOTO K, NOSAKA-TAKAHASHI M, KISHI-KABOSHI M, et al. Post-embryonic function of GLOBULAR EMBRYO 4 (GLE4)/OsMPK6 in rice development[J]. Plant Biotechnology, 2023, 40(1): 9-13. |
[20] | MIMURA M, ITOH J I. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development[J]. Rice, 2014, 7: 1-5. |
[21] | FANG J J, YUAN S J, LI C C, et al. Reduction of ATPase activity in the rice kinesin protein Stemless Dwarf 1 inhibits cell division and organ development[J]. The Plant Journal, 2018, 96(3): 620-634. |
[22] | KOMORISONO M, UEGUCHI-TANAKA M, AICHI I, et al. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J]. Plant Physiology, 2005, 138(4): 1 982-1 993. |
[23] | SHEN W Q, SUN J J, XIAO Z, et al. Narrow and Stripe Leaf 2 regulates leaf width by modulating cell cycle progression in rice[J]. Rice, 2023, 16(1): 20. |
[24] | ZHANG T, FENG P, LI Y F, et al. VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice[J]. Journal of Experimental Botany, 2018, 69(20): 4 791-4 804. |
[25] | XU P, ALI A, HAN B, et al. Current advances in molecular basis and mechanisms regulating leaf morphology in rice[J]. Frontiers in Plant Science, 2018, 9: 1 528. |
[26] | YAMAGUCHI T, NAGASAWA N, KAWASAKI S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J]. The Plant Cell, 2004, 16(2): 500-509. |
[27] | QI J, QIAN Q, BU Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1 947-1 959. |
[28] | ISHIWATA A, OZAWA M, NAGASAKI H, et al. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice[J]. Plant and Cell Physiology, 2013, 54(5): 779-792. |
[29] | UZAIR M, LONG H, ZAFAR S A, et al. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice[J]. Plant Physiology, 2021, 186(1): 497-518. |
[30] | HU J, ZHU L, ZENG D, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Molecular Biology, 2010, 73: 283-292. |
[31] | CAL A J, SANCIANGCO M, REBOLLEDO M C, et al. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought[J]. Plant, Cell & Environment, 2019, 42(5): 1 532-1 544. |
[32] | LI L, SHI Z Y, LI L, et al. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice[J]. Molecular Plant, 2010, 3(5): 807-817. |
[33] | ZOU L P, SUN X H, ZHANG Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011, 156(3): 1 589-1 602. |
[34] | HAN Y, YANG J L, WU H, et al. Improving rice leaf shape using CRISPR/Cas9-mediated genome editing of SRL1 and characterizing its regulatory network involved in leaf rolling through transcriptome analysis[J]. International Journal of Molecular Sciences, 2023, 24(13): 11 087. |
[35] | DAI M Q, HU Y F, ZHAO Y, et al. Regulatory networks involving YABBY genes in rice shoot development[J]. Plant Signaling & Behavior, 2007, 2(5): 399-400. |
[36] | XU Y, WANG Y H, LONG Q Z, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice[J]. Planta, 2014, 239: 803-816. |
[37] | ZHOU Y B, WANG D, WU T, et al. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice[J]. Molecular Breeding, 2018, 38: 1-13. |
[38] | LI C, ZOU X H, ZHANG C Y, et al. OsLBD3-7 overexpression induced adaxially rolled leaves in rice[J]. PLoS One, 2016, 11(6): e0156413. |
[39] | YANG C H, LI D Y, LIU X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2014, 14: 1-15. |
[40] | DENG P, JING W, CAO C J, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2210338119. |
[41] | WOO Y M, PARK H J, SU’UDI M, et al. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio[J]. Plant Molecular Biology, 2007, 65: 125-136. |
[42] | 徐静, 王莉, 钱前, 等. 水稻叶片形态建成分子调控机制研究进展[J]. 作物学报, 2013, 39(5):767-774. |
[43] | ZHANG G H, XU Q, ZHU X D, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell, 2009, 21(3): 719-735. |
[44] | WU R H, LI S B, HE S, et al. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3 392-3 411. |
[45] | ZHAO S S, ZHAO L, LIU F X, et al. NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice[J]. Journal of Integrative Plant Biology, 2016, 58(12): 983-996. |
[46] | YE Y F, WU K, CHEN J F, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J]. Rice, 2018, 11: 1-14. |
[47] | 李金玫, 吴斌, 张先文. 三种主要植物激素的合成代谢与信号转导调控水稻株高的研究进展[J]. 分子植物育种, 2024, 22(15): 5 132-5 140. |
[48] | FUJINO K, MATSUDA Y, OZAWA K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics, 2008, 279: 499-507. |
[49] | WALLER F, FURUYA M, NICK P. OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene[J]. Plant Molecular Biology, 2002, 50: 415-425. |
[50] | QIAO J Y, ZHANG Y J, HAN S L, et al. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice[J]. Frontiers in Plant Science, 2022, 13: 979 033. |
[51] | HUANG G Q, HU H, VAN DE MEENE A, et al. AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints[J]. The Plant Cell, 2021, 33(9): 3 120-3 133. |
[52] | LIU X, YANG C Y, MIAO R, et al. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling[J]. Rice, 2018, 11: 1-12. |
[53] | HUANG J, LI Z Y, ZHAO D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice[J]. Scientific Reports, 2016, 6(1): 29938. |
[54] | ZHANG S N, WANG S K, XU Y X, et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant, Cell & Environment, 2015, 38(4): 638-654. |
[55] | SONG Y L, YOU J, XIONG L Z. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis[J]. Plant Molecular Biology, 2009, 70: 297-309. |
[56] | NAKAMURA A, UMEMURA I, GOMI K, et al. Production and characterization of auxin‐insensitive rice by overexpression of a mutagenized rice IAA protein[J]. The Plant Journal, 2006, 46(2): 297-306. |
[57] | CHEN S H, ZHOU L J, XU P, et al. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling[J]. PLoS Genetics, 2018, 14(11): e1007829. |
[58] | BIAN H W, XIE Y K, GUO F, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa)[J]. New Phytologist, 2012, 196(1): 149-161. |
[59] | CHANG S, CHEN Y X, JIA S H, et al. Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches[J]. PLoS Genetics, 2020, 16(10): e1009157. |
[60] | XU Y X, XIAO M Z, LIU Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice[J]. Plant Molecular Biology, 2017, 94: 97-107. |
[61] | SAZUKA T, KAMIYA N, NISHIMURA T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J]. The Plant Journal, 2009, 60(2): 227-241. |
[62] | SHIMADA A, UEGUCHI‐TANAKA M, SAKAMOTO T, et al. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. The Plant Journal, 2006, 48(3): 390-402. |
[63] | CHO S H, KANG K, LEE S H, et al. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2016, 67(6): 1 677-1 687. |
[64] | UEGUCHI-TANAKA M, FUJISAWA Y, KOBAYASHI M, et al. Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11 638-11 643. |
[65] | WANG L, WANG Z, XU Y Y, et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice[J]. The Plant Journal, 2009, 57(3): 498-510. |
[66] | DAI M Q, ZHAO Y, MA Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant physiology, 2007, 144(1): 121-133. |
[67] | HONG Z, UEGUCHI-TANAKA M, SHIMIZU-SATO S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem[J]. The Plant Journal, 2002, 32(4): 495-508. |
[68] | ZHU X L, LIANG W Q, CUI X, et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein[J]. The Plant Journal, 2015, 82(4): 570-581. |
[69] | SAKAMOTO T, MORINAKA Y, OHNISHI T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2006, 24(1): 105-109. |
[70] | KHEW C Y, TEO C J, CHAN W S, et al. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice[J]. Journal of Plant Physiology, 2015, 182: 23-32. |
[71] | QIAO S L, SUN S Y, WANG L L, et al. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture[J]. The Plant Cell, 2017, 29(2): 292-309. |
[72] | ZHANG G, SONG X G, GUO H Y, et al. A small G protein as a novel component of the rice brassinosteroid signal transduction[J]. Molecular Plant, 2016, 9(9): 1 260-1 271. |
[73] | RUAN W Y, GUO M N, XU L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice[J]. The Plant Cell, 2018, 30(4): 853-870. |
[74] | FENG Z M, WU C Y, WANG C M, et al. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice[J]. Journal of Experimental Botany, 2016, 67(14): 4 241-4 253. |
[75] | ZHANG X Q, SUN J, CAO X F, et al. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice[J]. Plant Physiology, 2015, 169(3): 2 118-2 128. |
[76] | 喻梓轩, 刘新勇, 张健, 等. 生长素调控水稻生长发育的研究进展[J]. 中国稻米, 2024, 30(1):1-9. |
[77] | NARAMOTO S. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport[J]. Current Opinion in Plant Biology, 2017, 40: 8-14. |
[78] | WANG Q Q, MARCONI M, GUAN C M, et al. Polar auxin transport modulates early leaf flattening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2215569119. |
[79] | LI Y, WU L L, REN M Y, et al. Functional redundancy of OsPIN1 paralogous genes in regulating plant growth and development in rice[J]. Plant Signaling & Behavior, 2022, 17(1): 2 065 432. |
[80] | ZHENG M, WANG Y H, LIU X, et al. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice[J]. Journal of Experimental Botany, 2016, 67(11): 3 457-3 469. |
[81] | YOSHIKAWA T, ITO M, SUMIKURA T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes[J]. The Plant Journal, 2014, 78(6): 927-936. |
[82] | LUO X G, ZHENG J S, HUANG R Y, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice[J]. Plant Cell Reports, 2016, 35: 2 423-2 433. |
[83] | TONG H N, LIU L C, JIN Y, et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice[J]. The Plant Cell, 2012, 24(6): 2 562-2 577. |
[84] | WU Q, LI D Y, LI D J, et al. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2015, 6: 833. |
[85] | LI H B, FENG B H, LI J C, et al. RGA1 alleviates low‐light‐repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant, Cell & Environment, 2023, 46(4): 1 363-1 383. |
[86] | JE B I, PIAO H L, PARK S J, et al. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice[J]. The Plant Cell, 2010, 22(6): 1 777-1 791. |
[87] | GAN L J, WU H, WU D P, et al. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice[J]. Plant Science, 2015, 241: 238-245. |
[88] | WANG Y, SUN S Y, ZHU W J, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching[J]. Developmental Cell, 2013, 27(6): 681-688. |
[89] | LEE S C, KIM S J, HAN S K, et al. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice[J]. Journal of Plant Physiology, 2017, 214: 116-122. |
[90] | JANG S, CHO J Y, DO G R, et al. Modulation of rice leaf angle and grain size by expressing OsBCL1 and OsBCL2 under the control of OsBUL1 promoter[J]. International Journal of Molecular Sciences, 2021, 22(15): 7 792. |
[1] | FU Dihui, XING Zhipeng, CHENG Shuang, WANG Zhongxiang, CHEN Feiyang, HUANG Zhicheng, HU Yajie, GUO Baowei, WEI Haiyan, ZHANG Hongcheng. Current Status and Prospects of Research on Rice Film Mulching Cultivation Technology [J]. China Rice, 2024, 30(6): 1-6. |
[2] | HUANG Xuan, QIU Haiping, YAN Chengqi, JIANG Jiefeng, SHI Xianbo, YE Chaohui. Improvement of the Resistance of Japonica Rice to Blast and Bacterial Blight by Pyramiding Resistance Gene Pigm and Xa23 [J]. China Rice, 2024, 30(6): 105-109. |
[3] | HOU Fan, CHEN Youyuan, SHEN Fengping, SHANG Zishuai, SUN Yiming, ZHAN Liwei. Prolificacy, Stability and Adaptability Analysis of the New Indica-Japanica Hybrid Rice Variety Huazhongyou 9326 [J]. China Rice, 2024, 30(6): 110-113. |
[4] | XIA Xintong, DAI Shuting, ZHANG Mengen, WANG Xudong, HE Lizhi, LIU Dan. Research Progress on the Effect of Root Surface Iron Plaque on the Transfer and Accumulation of Heavy Metals in Rice [J]. China Rice, 2024, 30(6): 15-22. |
[5] | CHEN Shurong, HE Yuchang, QIN Birong, WANG Jie, TIAN Wenhao, ZHU Chunquan, KONG Yali, CAO Xiaochuang, ZHANG Junhua, JIN Qianyu, ZHU Lianfeng. Research Progress on the Application of Nitrogen Inhibitors in Paddy Fields [J]. China Rice, 2024, 30(6): 23-28. |
[6] | WANG Xingyu, WANG Jing, XU Qun, ZHANG Mengchen, WANG Shan, SUN Yanfei, WEI Xinghua, YANG Yaolong, GUO Xiaohong, FENG Yue. The Difference of QTL for Morphological Traits of Rice Flag Leaf by High-density Genetic Map in Two Different Environments [J]. China Rice, 2024, 30(6): 29-34. |
[7] | CHEN Li, SUN Jianchang, WANG Xin. Mapping of Rice Blast Resistance Gene Based on BSA-seq [J]. China Rice, 2024, 30(6): 35-41. |
[8] | LIU Linshuai, WANG Di, BIAN Jingyang, SUN Xingrong, SHAO Kai, HAN Bing, LAI Yongcai, LIU Kai. Research Progress on Identification Methods of Soda Salt-Alkali Tolerance of Rice [J]. China Rice, 2024, 30(6): 42-48. |
[9] | SONG Pingyuan, LIU Junquan, YANG Jian, ZHOU Ya, HU Bing, WANG Xiaowei, WANG Benfu, ZHANG Zhisheng, CHENG Jianping. Effects of the Nano-silicon and Active-silicon Application on Cadmium Reduction of Rice under Different Cadmium Stress [J]. China Rice, 2024, 30(6): 49-54. |
[10] | ZHANG Fali, WANG Qin, ZENG Tao, JIANG Mingjin, HE Zhiwang, ZHANG Hengdong. Study on the Effects of Mushroom Residue Application on Amylose and Amino Acid Content of Rice [J]. China Rice, 2024, 30(6): 55-59. |
[11] | YE Jialin, DU Jinglin, WU Guangyue, HU Jiahan, WANG Aoxi, LV Zhaoying, HU Hao. Effects of Storage Temperature and Rice Moisture Content on Quality of Rice in Carbon Dioxide Atmosphere Storage [J]. China Rice, 2024, 30(6): 60-65. |
[12] | SU Xianyue, JIANG Tianyi, PU Xue, JIANG Zhihao, LIU Tao, WEN Jiancheng, LI Dandan, XU Xiaoyu. Genetic Diversity of Yunnan Rice Germplasm Resources and Detection and Analysis of Rice Bran Lipid Characteristics [J]. China Rice, 2024, 30(6): 66-73. |
[13] | CAI Wei, QIN Yuan, CHEN Haotian, LIN Chenyu, YANG Jianchang, ZHANG Weiyang. Research Advances in the Mechanism Underlying Alternating Wet and Dry Irrigation and Biochar Affect Carbon Sequestration and Methane Emissions in Paddy Field [J]. China Rice, 2024, 30(6): 7-14. |
[14] | WANG Yan, GAO Meiqi, LI Rongping, ZHAO Xianli, ZHANG Meiling, BIAN Jingyang. Application of Sentinel-2 Remote Sensing Image in Rice Quality Monitoring in Panjin City [J]. China Rice, 2024, 30(6): 74-81. |
[15] | MIAO Tianhui, CAI Yunfei, WANG Xiaofeng, LIU Xin, YU Qiying, HAN Zhanyu, WANG Renbei. Development Status and Countermeasures of High Quality Rice Varieties in Zhejiang Province [J]. China Rice, 2024, 30(6): 82-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||