China Rice ›› 2025, Vol. 31 ›› Issue (1): 11-17.DOI: 10.3969/j.issn.1006-8082.2025.01.002
• Special Thesis & Basic Research • Previous Articles Next Articles
WEN Ya(), GU Jiayi, WANG Chaorui, ZHANG Ying, XIAO Zhilin, ZHANG Hao*(
)
Received:
2024-02-05
Online:
2025-01-20
Published:
2025-01-13
Contact:
ZHANG Hao
About author:
First author contact:1st author: 17798992089@163.com
温雅(), 顾嘉怡, 王超瑞, 张瑛, 肖治林, 张耗*(
)
通讯作者:
张耗
作者简介:
第一联系人:第一作者:17798992089@163.com
基金资助:
CLC Number:
WEN Ya, GU Jiayi, WANG Chaorui, ZHANG Ying, XIAO Zhilin, ZHANG Hao. Research Progress on Nitrogen Fertilizer Management Techniques for High Yield and Emission Reduction in Rice Production and Their Impacts on Greenhouse Gas Emissions from Paddy Fields[J]. China Rice, 2025, 31(1): 11-17.
温雅, 顾嘉怡, 王超瑞, 张瑛, 肖治林, 张耗. 水稻高产减排的氮肥管理技术及其对稻田温室气体排放影响的研究进展[J]. 中国稻米, 2025, 31(1): 11-17.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.01.002
[1] | 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10):105-107. |
[2] | MIAO Y X, STEWART A B, ZHANG F S. Long-term experiments for sustainable nutrient management in China: A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397-414. |
[3] | 程琳琳, 张俊飚, 田云, 等. 中国省域农业碳生产率的空间分异特征及依赖效应[J]. 资源科学, 2016, 38(2):276-289. |
[4] | SAUNOIS M. The global methane budget 2000—2017[J]. Earth System Science Data, 2020, 12(3): 1 561-1 623. |
[5] | QIAN H Y, ZHU X C, HUANG S, et al. Greenhouse gas emissions and mitigation in rice agriculture[J]. Nature Reviews Earth & Environment, 2023, 4(10): 716-732. |
[6] | 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1 164. |
[7] | 余锋, 李思宇, 邱园园, 等. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1):1-12. |
[8] | 任孝俭, 彭雨瑄, 韩凯艳, 等. 水稻植株对稻田甲烷排放的影响及其生物学机理研究进展[J]. 中国农学通报, 2022, 38(36):80-87. |
[9] | 樊代佳. 氮肥深施对免耕稻田土壤有机质特性、甲烷排放及微生物群落的影响机制[D]. 武汉: 华中农业大学, 2021. |
[10] | STEIN L Y. The long-term relationship between microbial metabolism and greenhouse gases[J]. Trends in Microbiology, 2020, 28(6): 500-511. |
[11] | 张亚军. OsRGA1影响水稻根系物质分配及稻田甲烷排放的机制研究[D]. 扬州: 扬州大学, 2021. |
[12] | MALYAN S K, BHATIA A, KUMAR A, et al. Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment, 2016, 572: 874-896. |
[13] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2):175-181. |
[14] | 朱利群, 王春杰, 杨曼君, 等. 施肥对长江中下游稻田温室气体排放的影响——基于Meta分析[J]. 资源科学, 2017, 39(1):105-115. |
[15] | LINQUIST B A, ADVIENTO-BORBE M A, PITTELKOW C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21. |
[16] | SHAKOOR A. Influence of nitrogen fertilizer and straw returning on CH4 emission from a paddy field in Chao Lake Basin, China[J]. Applied Ecology and Environmental Research, 2020, 18(1): 1 585-1 600. |
[17] | 丁维新, 蔡祖聪. 氮肥对土壤甲烷产生的影响[J]. 农业环境科学学报, 2003, 22(3):380-383. |
[18] | 马晨蕾, 裴自伟, 李伏生. 灌溉方式及施氮对双季稻田甲烷排放及有机碳组分的影响[J]. 华南农业大学学报, 2021, 42(5):41-49. |
[19] | XU P, ZHOU W, JIANG M D, et al. Nitrogen fertilizer application in the rice-growing season can stimulate methane emissions during the subsequent flooded fallow period[J]. Science of the Total Environment, 2020, 744: 140632. |
[20] | 王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J]. 生态学报, 2013, 33(10):3 103-3 113. |
[21] | KONG D L, LI S Q, JIN Y G, et al. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies[J]. Geoderma, 2019, 347: 233-243. |
[22] | KE X B, LU Y H, CONRAD R. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms[J]. FEMS Microbiology Ecology, 2014, 87(1): 18-29. |
[23] | LIU J N, ZANG H D, XU H S, et al. Methane emission and soil microbial communities in early rice paddy as influenced by urea-N fertilization[J]. Plant and Soil, 2019, 445(2): 85-100. |
[24] | 潘红, 李勇, 孟春梅, 等. 氮素水平对土壤甲烷氧化和硝化微生物相互作用的影响[J]. 土壤学报, 2022, 59(2):557-567. |
[25] | 毛婉琼, 夏银行, 马冲, 等. 稻田微氧层和还原层土壤有机碳矿化对氮素添加的响应[J]. 环境科学, 2023, 44(11):6 248-6 256. |
[26] | IQBAL M F, LIU S H, ZHU J W, et al. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy[J]. Journal of Environmental Management, 2021, 279: 111 583. |
[27] | 汪本福, 余振渊, 程建平, 等. 氮素对水稻产量和品质形成的影响研究进展[J]. 华中农业大学学报, 2022, 41(1):76-83. |
[28] | DAS K, BARUAH K K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2008, 134(2): 303-312. |
[29] | ZHANG Y, JIANG Y, LI Z J, et al. Aboveground morphological traits do not predict rice variety effects on CH4 emissions[J]. Agriculture, Ecosystems & Environment, 2015, 208: 86-93. |
[30] | 李杰, 石元亮, 王玲莉, 等. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响[J]. 植物营养与肥料学报, 2019, 25(12):2 095-2 101. |
[31] | HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2 364-2 374. |
[32] | KUDEYAROV V N. Nitrous oxide emission from fertilized soils: an analytical review[J]. Eurasian Soil Science, 2020, 53(10): 1 396-1 407. |
[33] | YAN X, SHI S, DU L, et al. Pathways of N2O emission from rice paddy soil[J]. Soil Biology and Biochemistry, 2000, 32(3): 437-440. |
[34] | SONG H X, ZHU Q A, BLANCHET J P. Central role of nitrogen fertilizer relative to water management in determining direct nitrous oxide emissions from global rice-based ecosystems[J]. Global Biogeochemical Cycles, 2023, 37(11): e2023GB007744. |
[35] | KIM G W, KIM P J, KHAN M I, et al. Effect of rice planting on nitrous oxide (N2O) emission under different levels of nitrogen fertilization[J]. Agronomy, 2021, 11(2): 217. |
[36] | SENBAYRAM M. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture Ecosystems & Environment, 2011, 147: 4-12. |
[37] | 杨建昌, 刘立军, 张耗. 高产水稻氮肥高效利用原理与技术[M]. 北京: 科学出版社,2022:146-159. |
[38] | 李文涛, 于春晓, 张丽莉, 等. 有机无机配施对水稻产量及氮肥残效的影响[J]. 中国土壤与肥料, 2022(1):63-72. |
[39] | YANG Y D, WANG P X, ZENG Z H. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic-inorganic fertilization strategies[J]. Agronomy, 2019, 9(1): 14. |
[40] | 侯红乾, 冀建华, 刘秀梅, 等. 不同比例有机肥替代化肥对水稻产量和氮素利用率的影响[J]. 土壤, 2020, 52(4):758-765. |
[41] | 杨胜玲, 黄兴成, 李渝, 等. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9):1 815-1 825. |
[42] | 梅婷婷, 王小利, 段建军, 等. 有机无机肥配施对水稻产量、氮吸收利用和根系形态的影响[J]. 中国农学通报, 2023, 39(15):92-98. |
[43] | WEI H Y, HU L, ZHU Y, et al. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice[J]. Field Crops Research, 2018, 218: 88-96. |
[44] | 唐海明, 肖小平, 汤文光, 等. 长期施肥对双季稻田甲烷排放和关键功能微生物的影响[J]. 生态学报, 2017, 37(22):7668-7 678. |
[45] | LIAO B, CAI T C, WU X, et al. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field[J]. Environmental Management, 2023, 344: 118 372. |
[46] | DHANUSHKODI V, PRIYADHARSHIN B T, BASKAR M, et al. Slow and controlled release nitrogen fertilizers: options for improving rice productivity: a review[J]. International Journal of Plant & Soil Science, 2022, 34(24): 970-981. |
[47] | 聂军, 郑圣先, 戴平安, 等. 控释氮肥调控水稻光合功能和叶片衰老的生理基础[J]. 中国水稻科学, 2005, 19(3):255-261. |
[48] | 李晓敏, 李英琪, 何珍珍, 等. 尿素和缓释肥混配深施对水稻产量和生理特性的影响[J]. 中国稻米, 2023, 29(5):85-88. |
[49] | 张凯, 李猛, 王付娟, 等. 缓控释肥与尿素不同组配对南粳系列粳稻产量形成及氮肥利用的影响[J]. 信阳师范学院学报(自然科学版), 2023, 36(3):477-483. |
[50] | ZHOU W L, LOU Y S, REN L X, et al. Application of controlled-release nitrogen fertilizer decreased methane emission in transgenic rice from a paddy soil[J]. Water, Air and Soil Pollution, 2014, 225(3): 1-5. |
[51] | 纪洋, 张晓艳, 马静, 等. 控释肥及其与尿素配合施用对水稻生长期N2O排放的影响[J]. 应用生态学报, 2011, 22(8):2031-2 037. |
[52] | 李方敏, 樊小林, 刘芳, 等. 控释肥料对稻田氧化亚氮排放的影响[J]. 应用生态学报, 2004, 15(11):2170-2174 |
[53] | LI L, TIAN H, ZHANG M H, et al. Deep placement of nitrogen fertilizer increases rice yield and nitrogen use efficiency with fewer greenhouse gas emissions in a mechanical direct-seeded cropping system[J]. The Crop Journal, 2021, 9(6): 1 386-1 396. |
[54] | 朱从桦, 张玉屏, 向镜, 等. 侧深施氮对机插水稻产量形成及氮素利用的影响[J]. 中国农业科学, 2019, 52(23):4 228-4 239. |
[55] | 张晨晖, 章岩, 李国辉, 等. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4):1039-1 051. |
[56] | SCHIMEL J. Global change: rice, microbes and methane[J]. Nature, 2000, 403: 375-377. |
[57] | 杨明达. 缓控释肥种类及施肥方式对氨挥发和温室气体排放的影响[D]. 南京: 南京农业大学, 2021. |
[1] | DAI Shuaijun, ZHANG Yunbo, HUANG Liying. Research Progress on the Early Vigor of Cereal Crop [J]. China Rice, 2025, 31(1): 1-10. |
[2] | HUANG Nanxun, ZHANG Minqiang, YE Qingsheng, ZHANG Congkun, LI Jianxiong, WANG Xinyu, FU Youqiang, LIANG Kaiming. Effects of Different Cultivation Techniques and Varieties on Grain Yield, Fertilizer Utilization and Indirect Carbon Footprint of Indica Rice in South China [J]. China Rice, 2025, 31(1): 18-26. |
[3] | LIU Qing, SUN Luhong, GAO Shiwei, LIU Yuqiang, CHANG Huilin, MA Cheng, WANG Jingze, WANG Cuiling, NIE Shoujun. Effects of Salicylic Acid on Growth and Physiological Characteristics in Different Drought Tolerance Rice Varieties under Drought Stress [J]. China Rice, 2025, 31(1): 27-34. |
[4] | LI Hu, WU Zishuai, LIU Guanglin, CHEN Chuanhua, LUO Qunchang, ZHU Qinan. Analysis of Variation Types of BADH2 Aroma Genes and Detection of Rice Blast Resistance Genes in 80 Aromatic Rice Materials [J]. China Rice, 2025, 31(1): 35-43. |
[5] | MAO Xiaohong, LI Yiyun, FU Linlin. Study on the Characteristics of Grain Production and the Countermeasures of Productivity Improvement in Zhejiang Province [J]. China Rice, 2025, 31(1): 44-53. |
[6] | YU Yanfeng, YUAN Tingting, YU Yongqi, SUN Mingzhu. Situation and High-quality Development Strategies of Jiangxi’s Grain Industry [J]. China Rice, 2025, 31(1): 54-60. |
[7] | DUAN Junzhi, YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei. Progress on Application of WRKY Transcription Factor in Rice Stress Tolerance Genetic Engineering [J]. China Rice, 2025, 31(1): 61-67. |
[8] | LIU Youhong, TANG Ao, DONG Wenjun, MENG Ying, ZHANG Xijuan, LIU Kai, LENG Chunxu, SHANG Quanyu, LAI Yongcai. Evolution Rule of Major Agronomic Traits of Heilongjiang Japonica Rice at Different Breeding Stages [J]. China Rice, 2025, 31(1): 68-73. |
[9] | WANG Ying, MA Jiansen, WANG Fang, LIU Ruliang, HONG Yu, MAO Xinping. Screening and Evaluation of Nitrogen-Efficient Varieties of Rice in the Yellow Rive Irrigation Area [J]. China Rice, 2025, 31(1): 74-78. |
[10] | KANG Mintai, DU Xiaojing, ZHANG Yanhong, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Principal Component Analysis and Comprehensive Evaluation of Salt Tolerance Related Traits in Japonica Rice in Xinjiang [J]. China Rice, 2025, 31(1): 79-83. |
[11] | QIN Yitian, WANG Zaiman, PAN Shenggang, ZHANG Minghua, MO Zhaowen. Comparison of Yield and Grain Quality among Different Fragrant Rice Varieties for Ratooning Rice Planting [J]. China Rice, 2025, 31(1): 84-88. |
[12] | SHEN Jianghua, XIAO Shan, ZHENG Wei, CHAI Weigang, YAO Hongyan. Study on the Effect of Sex-pheromone-trap Intelligent Monitoring of Chilo suppressalis [J]. China Rice, 2025, 31(1): 89-93. |
[13] | WU Huayu, WU Hongmiao, LI Zhong, WU Wenge. Development and Technical Points of the Side Deep Fertilization Technology for Rice Mechanical Transplanting [J]. China Rice, 2025, 31(1): 94-99. |
[14] | KANG Hongcan, LI Guosheng, WANG Jinyan, ZHANG Yi, DUAN Haoping, YIN Zhengqin, HE Rongman, CHUAN Xingkuan. Effects of Sowing Date on Fertility Transformation and Self-pollination Rate of Rice Dual-purpose Genic Male Sterile Lines [J]. China Rice, 2025, 31(1): 100-105. |
[15] | ZHANG Shaobo, ZHANG Jincheng. Exploration of Lateral Depth Variable Fertilization Technology for Rice in Cold Regions [J]. China Rice, 2025, 31(1): 106-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||