China Rice ›› 2024, Vol. 30 ›› Issue (6): 23-28.DOI: 10.3969/j.issn.1006-8082.2024.06.004
• Special Thesis & Basic Research • Previous Articles Next Articles
CHEN Shurong1(), HE Yuchang1, QIN Birong1,2, WANG Jie1, TIAN Wenhao1, ZHU Chunquan1, KONG Yali1, CAO Xiaochuang1, ZHANG Junhua1, JIN Qianyu1, ZHU Lianfeng1,*(
)
Received:
2023-12-22
Online:
2024-11-20
Published:
2024-11-19
Contact:
ZHU Lianfeng
About author:
csr1169@163.com
陈书融1(), 何禹畅1, 秦碧蓉1,2, 王婕1, 田文昊1, 朱春权1, 孔亚丽1, 曹小闯1, 张均华1, 金千瑜1, 朱练峰1,*(
)
通讯作者:
朱练峰
作者简介:
csr1169@163.com
基金资助:
CLC Number:
CHEN Shurong, HE Yuchang, QIN Birong, WANG Jie, TIAN Wenhao, ZHU Chunquan, KONG Yali, CAO Xiaochuang, ZHANG Junhua, JIN Qianyu, ZHU Lianfeng. Research Progress on the Application of Nitrogen Inhibitors in Paddy Fields[J]. China Rice, 2024, 30(6): 23-28.
陈书融, 何禹畅, 秦碧蓉, 王婕, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 金千瑜, 朱练峰. 稻田配施氮肥增效剂的应用研究进展[J]. 中国稻米, 2024, 30(6): 23-28.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2024.06.004
[1] | WU Q, WANG Y H, DING Y F, et al. Effects of different types of slow- and controlled-release fertilizers on rice yield[J]. Journal of Integrative Agriculture, 2021, 20(6): 1 503-1 514. |
[2] | GILSANZ C, BAEZ D, MISSELBROOK T H, et al. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP[J]. Agriculture Ecosystems & Environment, 2016, 216: 1-8. |
[3] | MATCZUK D, SICZEK A. Effectiveness of the use of urease inhibitors in agriculture: a review[J]. International Agrophysics, 2021, 35(2): 197-208. |
[4] | SONG A L, LIANG Y C, ZENG X B, et al. Substrate-driven microbial response: A novel mechanism contributes significantly to temperature sensitivity of N2O emissions in upland arable soil[J]. Soil Biology & Biochemistry, 2018, 118: 18-26. |
[5] | ALLENDE-MONTALBAN R, MARTIN-LAMMERDING D, DELGADO M D M, et al. Urease inhibitors effects on the nitrogen use efficiency in a maize-wheat rotation with or without water deficit[J]. Agriculture, 2021, 11(7): 684. |
[6] | 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9):1401-1 408. |
[7] | DRULIS P, KRIAUCIUNIENE Z, LIAKAS V. The influence of different nitrogen fertilizer rates, urease inhibitors and biological preparations on maize grain yield and yield structure elements[J]. Agronomy, 2022, 12(3): 741. |
[8] | OUYANG Y, NORTON J M, STARK J M, et al. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology & Biochemistry, 2016, 96: 4-15. |
[9] | 陈沂岭, 赵学强, 张玲玉, 等. 铵硝营养对水稻氮效率和矿质养分吸收的影响[J]. 土壤, 2019, 51(2):243-250. |
[10] | MODOLO L V, DA-SILVA C J, BRANDAO D S, et al. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s[J]. Journal of Advanced Research, 2018, 13: 29-37. |
[11] | 田发祥, 纪雄辉, 官迪, 等. 氮肥增效剂的研究进展[J]. 杂交水稻, 2020, 35(5):7-13. |
[12] | 周玉玲. 硝化抑制剂与生物炭添加下水稻氮素利用差异及其环境效应[D]. 南京: 南京农业大学, 2019. |
[13] | 杨俞娟. 水分管理方式与供氮水平对水稻土氮素养分转化及供氮能力的影响[D]. 杭州: 浙江大学, 2010. |
[14] | LI W, ZHANG Z, LI D, et al. Effects of three nitrification inhibitors on the nitrogen conversion in purple soil and its effect on the nitrogen uptake of citrus seedlings[J]. Agricultural Sciences, 2018, 9(6): 655-669. |
[15] | 张文学, 杨成春, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31(4):417-424. |
[16] | BARBERENA I M, ESPINDULA M C, ARAUJO L F B D, et al. Use of urease inhibitors to reduce ammonia volatilization in Amazonian soils[J]. Pesquisa Agropecuária Brasileira, 2019, 54: 253. |
[17] | 李学红, 李东坡, 武志杰, 等. 脲酶/硝化抑制剂在黑土和褐土中对尿素氮转化的调控效果[J]. 应用生态学报, 2021, 32(4):1352-1 360. |
[18] | 周玉玲, 侯朋福, 李刚华, 等. 两种土壤增效剂对稻田氨挥发排放的影响[J]. 环境科学, 2019, 40(8):3746-3 752. |
[19] | 杨剑波. 硝化抑制剂DMPP对氮素转化的影响及其作用机理研究[D]. 南京: 南京农业大学, 2012. |
[20] | 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6):1411-1 419. |
[21] | GUO C, WANG H, ZOU D, et al. A novel amended nitrification inhibitor confers an enhanced suppression role in the nitrification of ammonium in soil[J]. Journal of Soils and Sediments, 2022, 22(3): 831-843. |
[22] | KLIMCZYK M, SICZEK A, SCHIMMELPFENNING L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission[J]. Science of The Total Environment, 2021, 771: 145483. |
[23] | 马芬, 杨荣全, 郭李萍. 控制氮肥施用引起的活性氮气体排放:脲酶/硝化抑制剂研究进展与展望[J]. 农业环境科学学报, 2020, 39(4):908-922. |
[24] | 胡继杰, 朱练峰, 钟楚, 等. 溶解氧对稻田土壤氮素转化及水稻氮代谢影响研究进展[J]. 生态学杂志, 2017, 36(7):2019-2 028. |
[25] | WANG X, BAI J H, XIE T, et al. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112338. |
[26] | 刘钰莹, 张妍, 汪哲远, 等. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2):223-232. |
[27] | 何威明, 保万魁, 王旭. 氮肥增效剂及其效果评价的研究进展[J]. 中国土壤与肥料, 2011(3):1-7. |
[28] | FU Q, ABADIE M, BLAUD A, et al. Effects of urease and nitrification inhibitors on soil N, nitrifier abundance and activity in a sandy loam soil[J]. Biology and Fertility of Soils, 2020, 56(2): 185-194. |
[29] | DANG C Y, LIU W, LIN Y X, et al. Dominant role of ammonia-oxidizing bacteria in nitrification due to ammonia accumulation in sediments of Danjiangkou reservoir, China[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3 399-3 410. |
[30] | 张苗苗, 沈菊培, 贺纪正, 等. 硝化抑制剂的微生物抑制机理及其应用[J]. 农业环境科学学报, 2014, 33(11):2077-2 083. |
[31] | KEIBLINGER K M, ZEHETNER F, MENTLER A, et al. Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil[J]. Environmental Science and Pollution Research, 2018, 25(11): 11 173-11 177. |
[32] | 胡田田, 崔晓路, 李梦月, 等. 不同氮肥增效剂和水氮用量对冬小麦产量的影响[J]. 农业机械学报, 2021, 52(4):302-310. |
[33] | SERNA M D, BANULS J, QUINONES A, et al. Evaluation of 3,4-dimethylpyrazole phosphate as a nitrification inhibitor in a Citrus-cultivated soil[J]. Biology and Fertility of Soils, 2000, 32(1): 41-46. |
[34] | DAWAR K, ZAMAN M, ROWARTH J S, et al. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 41-50. |
[35] | 张文学. 生化抑制剂对稻田氮素转化的影响及机理[D]. 北京: 中国农业科学院, 2014. |
[36] | CANTARELLA H, OTTO R, SOARES J R, et al. Agronomic efficiency of NBPT as a urease inhibitor: A review[J]. Journal of Advanced Research, 2018, 13: 19-27. |
[37] | 杨秀霞, 商庆银, 陈柳燕, 等. 新型氮肥增效剂在水稻上的节肥增产效果研究[J]. 江西农业大学学报, 2016, 38(4):616-622. |
[38] | 蒲玮, 吴雅薇, 张頔, 等. 减氮配施氮肥增效剂对土壤速效氮和玉米产量的影响[J]. 水土保持学报, 2021, 35(3):276-283. |
[39] | 周群, 袁锐, 朱宽宇, 等. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9):2285-2 299. |
[40] | 石柱, 张丹, 杨奇志, 等. 不同氮肥增效剂对水稻产量和养分利用率的影响[J]. 作物研究, 2016, 30(1):14-17. |
[41] | 曾建华, 谢良商. 含硝化抑制剂(DMPP)尿素对海南水稻产量的影响[J]. 安徽农学通报, 2008, 14(9):103. |
[42] | 孙海军, 闵炬, 施卫明, 等. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤, 2015, 47(6):1027-1 033. |
[43] | 刘钰莹. 氮肥增效剂与生物炭配施对水稻土氮素转化及利用效率的影响[D]. 杭州: 浙江大学, 2020. |
[44] | BARTH G, VON TUVHER S, SCHMIDHALTER U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor[J]. Biology and Fertility of Soils, 2001, 34(2): 98-102. |
[45] | 陈苇, 卢婉芳. 稻田脲酶抑制剂对15N-尿素去向的影响[J]. 核农学报, 1997, 11(3):151-156. |
[46] | 叶会财, 李大明, 柳开楼, 等. 脲酶抑制剂配施比例对红壤双季稻产量的影响[J]. 土壤通报, 2014, 45(4):909-912. |
[47] | 宋涛, 尹俊慧, 胡兆平, 等. 脲酶/硝化抑制剂减少农田土壤氮素损失的作用特征[J]. 农业资源与环境学报, 2021, 38(4):585-597. |
[48] | FOLINA A, TATARIDAS A, MAVROEIDIS A, et al. Evaluation of various nitrogen indices in N-fertilizers with inhibitors in field crops: A review[J]. Agronomy, 2021, 11(3): 418. |
[49] | VALE M, NGUYEN C, DAMBRINE E, et al. Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations[J]. Soil Biology & Biochemistry, 2005, 37(12): 2 329-2 333. |
[50] | VENKATESAN S, SUDHAHAR V, SENTHURPANDIAN V K, et al. Urea hydrolysis of tea soils as influenced by incubation period, soil pH, and nitrification inhibitor[J]. Communications in Soil Science and Plant Analysis, 2007, 38(17-18): 2 295-2 307. |
[51] | MULLER C, STEVENS R J, LAUGHLIN R J, et al. The nitrification inhibitor DMPP had no effect on denitrifying enzyme activity[J]. Soil Biology & Biochemistry, 2002, 34(11): 1 825-1 827. |
[52] | LI H, LIANG X Q, CHEN Y X, et al. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system[J]. Journal of Environmental Sciences, 2008, 20(2): 149-155. |
[53] | 沈晓忆, 夏围围, 张洁, 等. 硝化抑制剂与尿素配施对旱地土壤温室气体排放及硝化微生物的影响[J]. 土壤, 2021, 53(3):512-521. |
[54] | 李杰, 石元亮, 王玲莉, 等. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响[J]. 植物营养与肥料学报, 2019, 25(12):2095-2 101. |
[55] | FLORIO A, CLARK I M, HIRSCH P R, et al. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil[J]. Biology and Fertility of Soils, 2014, 50(5): 795-807. |
[56] | MALCHAIR S, BOECK H J D, LEMMENS C M H M, et al. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming[J]. Applied Soil Ecology, 2010, 44(1): 15-23. |
[57] | 李学红, 李东坡, 薛妍, 等. 尿素氮在不同类型土壤中转化特征及其施用效果对生化抑制剂的响应[J]. 中国土壤与肥料, 2022(8): 56-65. |
[58] | 张文学, 王少先, 夏文建, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响[J]. 植物营养与肥料学报, 2019, 25(6):897-909. |
[59] | BYRNE M P, TOBIN J T, FORRESTAL P J, et al. Urease and nitrification inhibitors-as mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review[J]. Sustainability, 2020, 12(15): 6 018. |
[60] | 武志杰, 石元亮, 李东坡, 等. 稳定性肥料发展与展望[J]. 植物营养与肥料学报, 2017, 23(6):1614-1 621. |
[61] | MULLER J, DE ROSA D, FRIEDL J, et al. Combining nitrification inhibitors with a reduced N rate maintains yield and reduces N2O emissions in sweet corn[J]. Nutrient Cycling in Agroecosystems, 2023, 125: 107-121. |
[62] | 黄佳佳, 何莉莉, 刘玉学, 等. 生物炭配施硝化/脲酶抑制剂对亚热带水稻土活性氮气体排放的影响[J]. 应用生态学报, 2022, 33(4):1027-1 036. |
[1] | DAI Shuaijun, ZHANG Yunbo, HUANG Liying. Research Progress on the Early Vigor of Cereal Crop [J]. China Rice, 2025, 31(1): 1-10. |
[2] | WEN Ya, GU Jiayi, WANG Chaorui, ZHANG Ying, XIAO Zhilin, ZHANG Hao. Research Progress on Nitrogen Fertilizer Management Techniques for High Yield and Emission Reduction in Rice Production and Their Impacts on Greenhouse Gas Emissions from Paddy Fields [J]. China Rice, 2025, 31(1): 11-17. |
[3] | HUANG Nanxun, ZHANG Minqiang, YE Qingsheng, ZHANG Congkun, LI Jianxiong, WANG Xinyu, FU Youqiang, LIANG Kaiming. Effects of Different Cultivation Techniques and Varieties on Grain Yield, Fertilizer Utilization and Indirect Carbon Footprint of Indica Rice in South China [J]. China Rice, 2025, 31(1): 18-26,34. |
[4] | LIU Qing, SUN Luhong, GAO Shiwei, LIU Yuqiang, CHANG Huilin, MA Cheng, WANG Jingze, WANG Cuiling, NIE Shoujun. Effects of Salicylic Acid on Growth and Physiological Characteristics in Different Drought Tolerance Rice Varieties under Drought Stress [J]. China Rice, 2025, 31(1): 27-34. |
[5] | LI Hu, WU Zishuai, LIU Guanglin, CHEN Chuanhua, LUO Qunchang, ZHU Qinan. Analysis of Variation Types of BADH2 Aroma Genes and Detection of Rice Blast Resistance Genes in 80 Aromatic Rice Materials [J]. China Rice, 2025, 31(1): 35-43,53. |
[6] | MAO Xiaohong, LI Yiyun, FU Linlin. Study on the Characteristics of Grain Production and the Countermeasures of Productivity Improvement in Zhejiang Province [J]. China Rice, 2025, 31(1): 44-53. |
[7] | YU Yanfeng, YUAN Tingting, YU Yongqi, SUN Mingzhu. Situation and High-quality Development Strategies of Jiangxi’s Grain Industry [J]. China Rice, 2025, 31(1): 54-60. |
[8] | DUAN Junzhi, YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei. Progress on Application of WRKY Transcription Factor in Rice Stress Tolerance Genetic Engineering [J]. China Rice, 2025, 31(1): 61-67,73. |
[9] | LIU Youhong, TANG Ao, DONG Wenjun, MENG Ying, ZHANG Xijuan, LIU Kai, LENG Chunxu, SHANG Quanyu, LAI Yongcai. Evolution Rule of Major Agronomic Traits of Heilongjiang Japonica Rice at Different Breeding Stages [J]. China Rice, 2025, 31(1): 68-73. |
[10] | WANG Ying, MA Jiansen, WANG Fang, LIU Ruliang, HONG Yu, MAO Xinping. Screening and Evaluation of Nitrogen-Efficient Varieties of Rice in the Yellow Rive Irrigation Area [J]. China Rice, 2025, 31(1): 74-78,83. |
[11] | KANG Mintai, DU Xiaojing, ZHANG Yanhong, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Principal Component Analysis and Comprehensive Evaluation of Salt Tolerance Related Traits in Japonica Rice in Xinjiang#br# #br# [J]. China Rice, 2025, 31(1): 79-83. |
[12] | QIN Yitian, WANG Zaiman, PAN Shenggang, ZHANG Minghua, MO Zhaowen. Comparison of Yield and Grain Quality among Different Fragrant Rice Varieties for Ratooning Rice Planting [J]. China Rice, 2025, 31(1): 84-88,93. |
[13] | SHEN Jianghua, XIAO Shan, ZHENG Wei, CHAI Weigang, YAO Hongyan. Study on the Effect of Sex-pheromone-trap Intelligent Monitoring of Chilo suppressalis [J]. China Rice, 2025, 31(1): 89-93. |
[14] | WU Huayu, WU Hongmiao, LI Zhong, WU Wenge. Development and Technical Points of the Side Deep Fertilization Technology for Rice Mechanical Transplanting [J]. China Rice, 2025, 31(1): 94-99. |
[15] | KANG Hongcan, LI Guosheng, WANG Jinyan, ZHANG Yi, DUAN Haoping, YIN Zhengqin, HE Rongman, CHUAN Xingkuan. Effects of Sowing Date on Fertility Transformation and Self-pollination Rate of Rice Dual-purpose Genic Male Sterile Lines#br# [J]. China Rice, 2025, 31(1): 100-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||