China Rice ›› 2024, Vol. 30 ›› Issue (6): 7-14.DOI: 10.3969/j.issn.1006-8082.2024.06.002
• Special Thesis & Basic Research • Previous Articles Next Articles
CAI Wei1,2(), QIN Yuan1,2, CHEN Haotian1,2, LIN Chenyu1,2, YANG Jianchang1,2, ZHANG Weiyang1,2,*(
)
Received:
2023-11-13
Online:
2024-11-20
Published:
2024-11-19
Contact:
ZHANG Weiyang
About author:
cwlwsq@163.com
蔡炜1,2(), 秦缘1,2, 陈浩田1,2, 林晨语1,2, 杨建昌1,2, 张伟杨1,2,*(
)
通讯作者:
张伟杨
作者简介:
cwlwsq@163.com
基金资助:
CLC Number:
CAI Wei, QIN Yuan, CHEN Haotian, LIN Chenyu, YANG Jianchang, ZHANG Weiyang. Research Advances in the Mechanism Underlying Alternating Wet and Dry Irrigation and Biochar Affect Carbon Sequestration and Methane Emissions in Paddy Field[J]. China Rice, 2024, 30(6): 7-14.
蔡炜, 秦缘, 陈浩田, 林晨语, 杨建昌, 张伟杨. 干湿交替灌溉和生物质炭施用对稻田碳汇与甲烷排放的影响及其机理研究进展[J]. 中国稻米, 2024, 30(6): 7-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2024.06.002
[1] | 张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4):53-57. |
[2] | ZHANG L Y, JING Y M, XIANG Y Z, et al. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis[J]. Science of the Total Environment, 2018, 643: 926-935. |
[3] | 李晓娜, 张睿含, 张倩影, 等. 生物质炭服务农田生态系统“碳中和”的机制和潜力研究进展[J]. 环境科学研究, 2023, 36(2):381-392. |
[4] | 王程, 李玉双, 侯永侠, 等. 生物炭对土壤中温室气体排放的影响及其机理研究进展[J]. 北方园艺, 2023(8):127-132. |
[5] | 占国艳, 陈振宁, 童非, 等. 不同秸秆材料与制备工艺下生物炭性质及对土壤重金属的钝化效应[J]. 生态与农村环境学报, 2021, 37(1): 86-95. |
[6] | 关明, 于菲, 许连周, 等. 玉米秸秆生物炭添加对典型黑土保水性能的影响[J]. 黑龙江农业科学, 2019(10):42-44. |
[7] | YANG J C, ZHOU Q, ZHANG J H. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission[J]. The Crop Journal, 2017, 5(2): 151-158. |
[8] | ZHANG Y J, WANG W L, LI S Y, et al. Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation[J]. Agricultural Water Management, 2023, 281: 108 265. |
[9] | 张广斌, 马静, 徐华, 等. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 2023, 38(3):504-517. |
[10] | MIZRAHI I, JAMI E. The compositional variation of the rumen microbiome and its effect on host performance and methane emission[J]. Animal, 2018, 12(suppl2): 220-232. |
[11] | CUI H P, WANG Y F, SU X, et al. Response of methanogenic community and their activity to temperature rise in alpine swamp meadow at different water level of the permafrost wetland on Qinghai-Tibet Plateau[J]. Frontiers in Microbiology, 2023, 14: 1 181 658. |
[12] | YU X L, YANG X Q, WU Y J, et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems[J]. Soil Biology and Biochemistry, 2020, 144: 107 775. |
[13] | YUNIAR G, SAPUTERA W H, SASONGKO D, et al. Recent advances in photocatalytic oxidation of methane to methanol[J]. Molecules, 2022, 27(17): 5 496. |
[14] | GUGGENHEIM C, FREIMANN R, MAYR M J, et al. Environmental and microbial interactions shape methane-oxidizing bacterial communities in a stratified lake[J]. Frontiers in Microbiology, 2020, 11: 579 427. |
[15] | 魏甲彬, 李有清. 生物炭添加对根际土壤微生物群落影响研究进展[J]. 湖南生态科学学报, 2023, 10(2):101-108. |
[16] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2):175-181. |
[17] | 周聪, 谢晴, 薛梦琪, 等. 夜间增温下施硅对稻田CH4好氧氧化及其氮响应的影响[J]. 南方农业学报, 2022, 53(8):2133-2 141. |
[18] | 陈洪儒, 鲁艳红, 廖育林, 等. 等养分投入下冬种紫云英比秸秆还田更有效抑制稻田CH4的产生和排放[J]. 植物营养与肥料学报, 2022, 28(8):1376-1 387. |
[19] | 王敏, 唐旭, 李忻颖, 等. 非能源利用及其引起的温室气体排放核算模型研究[J]. 气候变化研究进展, 2023, 19(4):472-482. |
[20] | GALLAGHER J B, ZHANG K, CHUAN C H. A re-evaluation of wetland carbon sink mitigation concepts and measurements: A diagenetic solution[J]. Wetlands, 2022, 42(3): 23. |
[21] | GASSER A A, DIEL J, NIELSEN K, et al. A model ensemble approach to determine the humus building efficiency of organic amendments in incubation experiments[J]. Soil Use and Management, 2022, 38(1): 179-190. |
[22] | WOLOSZCZYK P, FIENCKE C, ELSNER D C, et al. Spatial and temporal patterns in soil organic carbon, microbial biomass and activity under different land-use types in a long-term soil-monitoring network[J]. Pedobiologia, 2020, 80: 150 642. |
[23] | 张方方, 岳善超, 李世清. 土壤有机碳组分化学测定方法及碳指数研究进展[J]. 农业环境科学学报, 2021, 40(2):252-259. |
[24] | 周际海, 袁东东, 袁颖红, 等. 生物质炭与有机物料混施对土壤温室气体排放和微生物活性的影响[J]. 环境科学学报, 2018, 38(7): 2 849-2 857. |
[25] | LI B, HUANG W H, ELSGAARD L, et al. Optimal biochar amendment rate reduced the yield-scaled N2O emissions from ultisols in an intensive vegetable field in South China[J]. Science of The Total Environment, 2020, 723: 138 161. |
[26] | 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574. |
[27] | WANG C, SUN H F, ZHANG X X, et al. Contributions of photosynthate carbon to methane emissions from rice paddies cultivated using different organic amendment methods: Results from an in-situ 13C-labelling study[J]. Geoderma, 2021, 402: 115 190. |
[28] | JACKSON R B, SAUNOIS M, BOUSQUET P, et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources[J]. Environmental Research Letters, 2020, 15(7): e071002. |
[29] | 安嫄嫄, 马琨, 王明国, 等. 玉米秸秆还田对土壤团聚体组成及其碳氮分布的影响[J]. 西北农业学报, 2020, 29(5):766-775. |
[30] | 陈伟, 刘磊, 刘光岩, 等. 辽宁中部地区水稻干湿交替灌溉试验研究[J]. 水利科学与寒区工程, 2019, 2(4):6-11. |
[31] | 焦敏娜, 周鹏, 孙权, 等. 不同改性生物炭及施用量对风沙土土壤团聚体及牧草产量的影响[J]. 中国土壤与肥料, 2020(6):34-40. |
[32] | RAHMAN M T, GUO Z C, ZHANG Z B, et al. Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a vertisol[J]. Soil and Tillage Research, 2018, 175: 28-36. |
[33] | 常琳溪, 梁新然, 王磊, 等. 中国稻田土壤有机碳汇特征与影响因素的研究进展[J]. 土壤, 2023, 55(3):487-493. |
[34] | 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3-12. |
[35] | 任立军, 李金, 邹洪涛, 等. 生物有机肥配施化肥对设施土壤养分含量及团聚体分布的影响[J]. 土壤, 2023, 55(4):756-763. |
[36] | LUO X S, ZENG L Y, WANG L, et al. Abundance for subgroups of denitrifiers in soil aggregates asscociates with denitrifying enzyme activities under different fertilization regimes[J]. Applied Soil Ecology, 2021, 166: 103 983. |
[37] | HE Y B, XU C, GU F, et al. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization[J]. Soil and Tillage Research, 2018, 184: 281-290. |
[38] | JOHN K, JANZ B, KIESE R, et al. Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production[J]. Science of The Total Environment, 2020, 710: 136 352. |
[39] | HAN X, XU C, DUNGAIT J A J, et al. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis[J]. Biogeosciences, 2018, 15(7): 1 933-1 946. |
[40] | 王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5):1012-1 020. |
[41] | ZHANG Y J, WANG S L, WANG H, et al. Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau[J]. Field Crops Research, 2018, 225: 170-179. |
[42] | DONG W J, GUO J, XU L J, et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China[J]. Journal of Environmental Sciences, 2018, 64: 289-297. |
[43] | LI J L, WAN Y F, WANG B, et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315: 1-10. |
[44] | SRIPHIROM P, CHIDTHAISONG A, TOWPRAYOON S. Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season[J]. Journal of Cleaner Production, 2019, 223: 980-988. |
[45] | 章妮, 陈克龙, 祁闻, 等. 模拟增温对青海湖高寒湿地产甲烷菌群落特征的影响[J]. 生态科学, 2023, 42(4):163-170. |
[46] | 余锋, 李思宇, 邱园园, 等. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1):1-12. |
[47] | 王永明, 徐永记, 纪洋, 等. 节水灌溉和控释肥施用耦合措施对单季稻田CH4和N2O排放的影响[J]. 环境科学, 2021, 42(12):6025-6 037. |
[48] | 田雅婷, 包智华, 温璐, 等. 锡林河河滨带放牧区和围封区土壤中甲烷氧化菌的甲烷氧化能力研究[J]. 湿地科学, 2023, 21(3):421-429. |
[49] | 丁吉娟, 刘飞, 顾航, 等. 甲烷代谢古菌分离培养研究进展[J]. 微生物学通报, 2022, 49(6):2266-2 280. |
[50] | 徐国伟, 吕强, 陆大克, 等. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报, 2016, 42(10):1495-1 505. |
[51] | ZHANG Y J, ZOU J L, DANG S N, et al. Topography modifies the effect of land-use change on soil respiration: A meta-analysis[J]. Ecosphere, 2021, 12(12): e03845. |
[52] | 张忠学, 韩羽, 齐智娟, 等. 秸秆还田下水氮耦合对黑土稻田CH4排放与产量的影响[J]. 农业机械学报, 2020, 51(7):254-262. |
[53] | 孟娟. 温室气体排放对农田生态系统的影响分析[J]. 中国资源综合利用, 2022, 40(5):185-187. |
[54] | 于茹, 宋佳珅, 张宏媛, 等. 秸秆隔层结合春灌对河套灌区盐碱地土壤呼吸及其温度敏感性的影响[J]. 中国农业科学, 2023, 56(12):2341-2 353. |
[55] | IBRAHIM M M, LI Z M, YE H J, et al. Carbon dioxide flux and microbial responses under multiple-nutrient manipulations in a subtropical forest soil[J]. Applied Soil Ecology, 2023, 192: 105 074. |
[56] | 刘源豪, 杜旭龙, 黄锦学, 等. 环境因子对矿质土壤呼吸影响的研究进展[J]. 应用生态学报, 2023, 34(10):2835-2 844. |
[57] | 佟玲, 戴永辉, 陈阳, 等. 水盐胁迫下老化生物炭对温室气体与玉米生长的影响[J]. 农业机械学报, 2023, 54(9):386-395. |
[58] | 杨士红, 王乙江, 徐俊增, 等. 节水灌溉稻田土壤呼吸变化及其影响因素分析[J]. 农业工程学报, 2015, 31(8):140-146. |
[59] | 汤亿, 严俊霞, 孙明, 等. 灌溉和翻耕对土壤呼吸速率的影响[J]. 安徽农业科学, 2009, 37(6):2625-2 627. |
[60] | FANG Y J, SINGH B P, NAZARIES L, et al. Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter[J]. European Journal of Soil Science, 2019, 70(5): 960-974. |
[61] | WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 2021, 162: 108 422. |
[62] | ZHANG Y L, SUN C X, WANG S Q, et al. Stover and biochar can improve soil microbial necromass carbon, and enzymatic transformation at the genetic level[J]. GCB Bioenergy, 2022, 14(10): 1 082-1 096. |
[63] | LIU B J, CAI Z H, ZHANG Y C, et al. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land[J]. Chemosphere, 2019, 224: 151-161. |
[64] | 彭家豪, 林少颖, 王维奇, 等. 秸秆与生物炭施加对茉莉园土壤真菌群落及有机碳库特征的影响[J]. 环境科学, 2023. https://doi.org/10.13227/j.hjkx.202306194. |
[65] | 李文杰, 左翔之, 王建, 等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学, 2023, 43(11):5913-5 923. |
[66] | 朱德伦, 周文瑾, 贾孟, 等. 烟秆生物质炭基肥对烤烟生理特性及土壤主要环境因子的影响[J]. 南方农业学报, 2023, 54(3):867-876. |
[67] | KHAN M I, HWANG H Y, KIM G W, et al. Microbial responses to temperature sensitivity of soil respiration in a dry fallow cover cropping and submerged rice mono-cropping system[J]. Applied Soil Ecology, 2018, 128: 98-108. |
[68] | 郭艳亮, 王丹丹, 郑纪勇, 等. 生物炭添加对半干旱地区土壤温室气体排放的影响[J]. 环境科学, 2015(9): 3 393-3 400. |
[69] | 刘丹, 彭超, 莫永亮, 等. 城市人工湖沉积物中好氧甲烷氧化潜力及活性甲烷氧化微生物[J]. 应用与环境生物学报, 2023, 29(3):599-607. |
[70] | 杨世梅, 何腾兵, 杨丽, 等. 秸秆与生物炭覆盖对土壤养分及温室气体排放的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(1):75-81. |
[71] | 蓝兴福, 王晓彤, 周雅心, 等. 炉渣与生物炭施加对福州平原水稻田温室气体排放的后续影响[J]. 环境科学, 2020, 41(1):489-498. |
[72] | SHEN Y F, ZHU L X, CHENG H Y, et al. Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in Northwest China[J]. Sustainability, 2017, 9(8): 1 482. |
[73] | 宋祥云, 宋春燕, 柳新伟, 等. 小麦玉米轮作条件下不同生物质炭对土壤腐殖物质的影响[J]. 土壤学报, 2021, 58(3):610-618. |
[74] | 张方娟, 宋雪英, 张玉兰, 等. 生物炭在土壤中的生态效应研究进展[J]. 生态科学, 2023, 42(3):241-248. |
[75] | XIAO Y A, YANG S H, XU J Z, et al. Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation[J]. Sustainability, 2018, 10(5): 1 371. |
[76] | ZHANG L Y, ADAMS J M, DUMONT M G, et al. Distinct methanotrophic communities exist in habitats with different soil water contents[J]. Soil Biology and Biochemistry, 2019, 132: 143-152. |
[77] | 王紫君, 王鸿浩, 李金秋, 等. 椰糠生物炭对热区双季稻田N2O和CH4排放的影响[J]. 环境科学, 2021, 42(8):3931-3 942. |
[78] | 彭灯云, 杨士红, 李伟征, 等. 生物炭施用对节水灌溉稻田甲烷产生菌与氧化菌的影响[J]. 节水灌溉, 2022(5):54-59. |
[79] | JIANG Z W, YANG S H, PANG Q Q, et al. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity[J]. Journal of Cleaner Production, 2021, 318: 128 595. |
[80] | YANG S H, SUN X, DING J, et al. Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China[J]. Journal of Environmental Management, 2020, 271: 111 029. |
[81] | BEILLOUIN D, CORBEELS M, DEMENOIS J, et al. A global meta-analysis of soil organic carbon in the Anthropocene[J]. Nature Communications, 2023, 14(1): 3 700. |
[82] | NI B, XU X C, ZHANG W, et al. Reduced fertilization mitigates N2O emission and drip irrigation has no impact on N2O and NO emissions in plastic-shed vegetable production in northern China[J]. Science of The Total Environment, 2022, 824: 153 976. |
[83] | ARWENYO B, VARCO J J, DYGERT A, et al. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil[J]. Journal of Environmental Management, 2023, 339: 117 863. |
[84] | 刘畅, 迟道才, 张丰, 等. 稻草生物炭对干湿交替稻田CH4和N2O排放的影响[J]. 农业工程学报, 2023, 39(14):232-242. |
[85] | 张继双, 陶冶, 宋练, 等. 年际环境温度变化驱动水稻产量及其构成对CO2浓度和温度升高的响应差异[J]. 土壤, 2022, 54(2):262-269. |
[86] | 王哲, 程俊丽, 卞园, 等. 老化作用对生物炭钝化白云鄂博矿区碱性土壤中Cd2+的影响[J]. 环境科学, 2022, 43(11):5205-5 213. |
[87] | 王欢, 符方宝, 李琼, 等. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9):4445-4 457. |
[88] | 魏甲彬, 成小琳, 周玲红, 等. 冬季施用鸡粪和生物炭对南方稻田土壤CO2与CH4排放的影响[J]. 中国生态农业学报, 2017, 25(12):1742-1 751. |
[89] | QIN H L, TANG Y F, SHEN J L, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil[J]. Biology and Fertility of Soils, 2018, 54: 885-895. |
[90] | REN X H, SUN H W, WANG F, et al. Effect of aging in field soil on biochar's properties and its sorption capacity[J]. Environmental Pollution, 2018, 242: 1 880-1 886. |
[91] | BRUUN S, JENSEN E S, JENSEN L S. Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration[J]. Organic Geochemistry, 2008, 39(7): 839-845. |
[1] | DAI Shuaijun, ZHANG Yunbo, HUANG Liying. Research Progress on the Early Vigor of Cereal Crop [J]. China Rice, 2025, 31(1): 1-10. |
[2] | WEN Ya, GU Jiayi, WANG Chaorui, ZHANG Ying, XIAO Zhilin, ZHANG Hao. Research Progress on Nitrogen Fertilizer Management Techniques for High Yield and Emission Reduction in Rice Production and Their Impacts on Greenhouse Gas Emissions from Paddy Fields [J]. China Rice, 2025, 31(1): 11-17. |
[3] | HUANG Nanxun, ZHANG Minqiang, YE Qingsheng, ZHANG Congkun, LI Jianxiong, WANG Xinyu, FU Youqiang, LIANG Kaiming. Effects of Different Cultivation Techniques and Varieties on Grain Yield, Fertilizer Utilization and Indirect Carbon Footprint of Indica Rice in South China [J]. China Rice, 2025, 31(1): 18-26,34. |
[4] | LIU Qing, SUN Luhong, GAO Shiwei, LIU Yuqiang, CHANG Huilin, MA Cheng, WANG Jingze, WANG Cuiling, NIE Shoujun. Effects of Salicylic Acid on Growth and Physiological Characteristics in Different Drought Tolerance Rice Varieties under Drought Stress [J]. China Rice, 2025, 31(1): 27-34. |
[5] | LI Hu, WU Zishuai, LIU Guanglin, CHEN Chuanhua, LUO Qunchang, ZHU Qinan. Analysis of Variation Types of BADH2 Aroma Genes and Detection of Rice Blast Resistance Genes in 80 Aromatic Rice Materials [J]. China Rice, 2025, 31(1): 35-43,53. |
[6] | MAO Xiaohong, LI Yiyun, FU Linlin. Study on the Characteristics of Grain Production and the Countermeasures of Productivity Improvement in Zhejiang Province [J]. China Rice, 2025, 31(1): 44-53. |
[7] | YU Yanfeng, YUAN Tingting, YU Yongqi, SUN Mingzhu. Situation and High-quality Development Strategies of Jiangxi’s Grain Industry [J]. China Rice, 2025, 31(1): 54-60. |
[8] | DUAN Junzhi, YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei. Progress on Application of WRKY Transcription Factor in Rice Stress Tolerance Genetic Engineering [J]. China Rice, 2025, 31(1): 61-67,73. |
[9] | LIU Youhong, TANG Ao, DONG Wenjun, MENG Ying, ZHANG Xijuan, LIU Kai, LENG Chunxu, SHANG Quanyu, LAI Yongcai. Evolution Rule of Major Agronomic Traits of Heilongjiang Japonica Rice at Different Breeding Stages [J]. China Rice, 2025, 31(1): 68-73. |
[10] | WANG Ying, MA Jiansen, WANG Fang, LIU Ruliang, HONG Yu, MAO Xinping. Screening and Evaluation of Nitrogen-Efficient Varieties of Rice in the Yellow Rive Irrigation Area [J]. China Rice, 2025, 31(1): 74-78,83. |
[11] | KANG Mintai, DU Xiaojing, ZHANG Yanhong, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Principal Component Analysis and Comprehensive Evaluation of Salt Tolerance Related Traits in Japonica Rice in Xinjiang#br# #br# [J]. China Rice, 2025, 31(1): 79-83. |
[12] | QIN Yitian, WANG Zaiman, PAN Shenggang, ZHANG Minghua, MO Zhaowen. Comparison of Yield and Grain Quality among Different Fragrant Rice Varieties for Ratooning Rice Planting [J]. China Rice, 2025, 31(1): 84-88,93. |
[13] | SHEN Jianghua, XIAO Shan, ZHENG Wei, CHAI Weigang, YAO Hongyan. Study on the Effect of Sex-pheromone-trap Intelligent Monitoring of Chilo suppressalis [J]. China Rice, 2025, 31(1): 89-93. |
[14] | WU Huayu, WU Hongmiao, LI Zhong, WU Wenge. Development and Technical Points of the Side Deep Fertilization Technology for Rice Mechanical Transplanting [J]. China Rice, 2025, 31(1): 94-99. |
[15] | KANG Hongcan, LI Guosheng, WANG Jinyan, ZHANG Yi, DUAN Haoping, YIN Zhengqin, HE Rongman, CHUAN Xingkuan. Effects of Sowing Date on Fertility Transformation and Self-pollination Rate of Rice Dual-purpose Genic Male Sterile Lines#br# [J]. China Rice, 2025, 31(1): 100-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||