China Rice ›› 2025, Vol. 31 ›› Issue (4): 19-25.DOI: 10.3969/j.issn.1006-8082.2025.04.005
• Special Thesis & Basic Research • Previous Articles Next Articles
TU Zhouyi1,2,#(), LIU Shiyu1,2,#(
), FU Chenjian1,2, XIE Zhimei1,2, HU Xiaochun1,2, QIN Peng1,2, SUN Zhenbiao1,2, JIANG Nan1,2,*(
), YANG Yuanzhu1,2,*(
)
Received:
2025-05-30
Online:
2025-07-20
Published:
2025-07-08
Contact:
JIANG Nan, YANG Yuanzhu
About author:
First author contact:#Co-first author: tuzhouyi@qq.com; liushiyu@lpht.com.cn
涂洲溢1,2,#(), 刘士毓1,2,#(
), 符辰建1,2, 谢志梅1,2, 胡小淳1,2, 秦鹏1,2, 孙振彪1,2, 江南1,2,*(
), 杨远柱1,2,*(
)
通讯作者:
江南,杨远柱
作者简介:
第一联系人:#共同第一作者:tuzhouyi@qq.com;liushiyu@lpht.com.cn
CLC Number:
TU Zhouyi, LIU Shiyu, FU Chenjian, XIE Zhimei, HU Xiaochun, QIN Peng, SUN Zhenbiao, JIANG Nan, YANG Yuanzhu. Molecular Breeding for Pests and Diseases Resistance in Rice: Current Status, Challenges and Prospects[J]. China Rice, 2025, 31(4): 19-25.
涂洲溢, 刘士毓, 符辰建, 谢志梅, 胡小淳, 秦鹏, 孙振彪, 江南, 杨远柱. 水稻抗病虫分子育种:现状、挑战与展望[J]. 中国稻米, 2025, 31(4): 19-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.04.005
[1] | SAVARYL S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430-439. |
[2] | 卓富彦, 陈学新, 夏玉先, 等. 2013—2022年我国水稻病虫害发生特点与绿色防控技术集成[J]. 中国生物防治学报, 2024, 40(5): 1 207-1 213. |
[3] | DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(7): 414-430. |
[4] | 宋应星. 天工开物译注(精)[M]. 上海: 上海古籍出版社, 2008. |
[5] | YAMADA M. Pathogenic specialization of rice blast fungus in Japan[J]. Jarq-japan Agricultural Research Quarterly, 1985, 19: 178-183. |
[6] | 鄂志国, 张丽靖, 焦桂爱, 等. 稻瘟病抗性基因的鉴定及利用进展[J]. 中国水稻科学, 2008, 22(5): 533-540. |
[7] | LIU X, HU X C, TU Z Y, et al. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility[J]. Frontiers in Plant Science, 2024, 15: 1 478 159. |
[8] | MACKILL D J. Inheritance of blast resistance in near-isogenic lines of rice[J]. Phytopathology, 1992, 82(7): 746-749. |
[9] | AMANTE-BORDEOS A, SITCH L A, NELSON R, et al. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa[J]. Theoretical & Applied Genetics, 1992, 84(3-4): 345-354. |
[10] | DENG Y W, ZHU X D, SHEN Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2and Pi9 in a broad-spectrum resistant Chinese variety[J]. Theoretical & Applied Genetics, 2006, 113(4): 705-713. |
[11] | 杨好, 黄衍焱, 易春霖, 等. 水稻Pi9位点6个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国农业科学, 2023, 56(21): 4 219-4 233. |
[12] | DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6 328): 962-965. |
[13] | ZHAI K R, DENG Y W, LIANG D, et al. RRM transcription factors interact with NLRs and regulate broad-spectrum blast resistance in rice[J]. Molecular Cell, 2019, 74(5): 996-1 009. |
[14] | ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. |
[15] | LIANG D, YANG D Y, LI T, et al. A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice[J]. Science Bulletin, 2025, 70(5): 733-747. |
[16] | ORBACH M J, FARRALL L, SWEIGARD J A, et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000, 12(11): 2 019-2 032. |
[17] | BRYAN G T, WU K S, FARRALL L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. The Plant Cell, 2000(12): 2 033-2 045. |
[18] | JIA Y L, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19(15): 4 004-4 014. |
[19] | ZHAO H J, WANG X Y, JIA Y L, et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1): 2 039. |
[20] | MENG X L, XIAO G, TELEBANCO-YANORIA M J, et al. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita[J]. Rice, 2020, 13(1): 19. |
[21] | XIAO G, LAKSANAVILAT N, CESARI S, et al. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner[J]. Nature plants, 2024, 10(6): 994-1 004. |
[22] | GREENWOOD J R, LACORTE-APOSTOL V, KROJ T, et al. Genome-wide association analysis uncovers rice blast resistance alleles of Ptr and Pia[J]. Communications Biology, 2024, 7(1): 607. |
[23] | CHEN X W, LIU X, HU X C, et al. The geographic distribution and natural variation of the rice blast fungus avirulence gene AVR-Pita1 in Southern China[J]. Plants, 2025, 14(8): 1 210. |
[24] | JIANG N, YAN J, LIANG Y, et al. Resistance genes and their Interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.) —An updated review[J]. Rice, 2020, 13(1): 3. |
[25] | LU Y D, ZHONG Q F, XIAO S Q, et al. A new NLR disease resistance gene Xa47 confers durable and broad-spectrum resistance to bacterial blight in rice[J]. Frontiers in Plant Science, 2022, 13(1): 1 037 901. |
[26] | SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243): 1 804-1 806. |
[27] | CENTURY K S, LAGMAN R A, ADKISSON M, et al. Developmental control of Xa21-mediated disease resistance in rice[J]. The Plant Journal, 2003, 20(2): 231-236. |
[28] | WANG G L, SONG W Y, RUAN D L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants[J]. Molecular Plant-Microbe Interactions, 1996, 9(9): 850-855. |
[29] | PARK C J, LEE S W, CHERN M, et al. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Science, 2010, 179(5): 466-471. |
[30] | CHEN X W, CHERN M S, CANLAS P E, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 8 029-8 034. |
[31] | PARK C J, PENG Y, CHEN X W, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(11): 2 614-2 614. |
[32] | PRUITT R N, SCHWESSINGER B, JOE A, et al. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a gram-negative bacterium[J]. Science Advances, 2015, 1(6): e1500245. |
[33] | LUU D D, JOE A, CHEN Y, et al. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8 525-8 534. |
[34] | JIANG G H, XIA Z H, ZHOU Y L, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1[J]. Molecular Genetics and Genomics, 2006, 275(4): 354-366. |
[35] | HOIBY T, ZHOU H Q, MITSIOU D J, et al. A facelift for the general transcription factor TFIIA[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2007, 1769(7-8): 429-436. |
[36] | MA W X, ZOU L F, JI Z Y, et al. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice[J]. Molecular Plant Pathology, 2018, 19(10): 2 248-2 262. |
[37] | GU K Y, TIAN D S, QIU C X, et al. Transcription activator‐like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2009, 10(6): 829-835. |
[38] | YUAN M, KE Y G, HUANG R Y, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria[J]. eLife, 2016, 5: e19605. |
[39] | WANG C L, ZHANG X P, FAN Y L, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015(8): 302. |
[40] | WANG C L, QIN T F, YU H M, et al. The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2014, 15(4): 333-341. |
[41] | SIDHU G S, KHUSH G S, MEW T W. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryza sativa L.[J]. Theoretical and Applied Genetics, 1978, 53(3): 105-111. |
[42] | CRUZ C M V, BAI J F, OÑA I, et al. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25):13500-13 505. |
[43] | CHEN X F, LIU P C, MEI L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Communications, 2021, 2(3): 100 143. |
[44] | LUO D P, HUGUET-TAPIA J C, RABORN R T, et al. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen[J]. Plant Communications, 2021, 2(3): 100 164. |
[45] | WANG C Y, CHEN S, FENG A Q, et al. Xa7, a small orphan gene harboring promoter trap for AvrXa7, leads to the durable resistance to Xanthomonasoryzae pv. oryzae[J]. Rice, 2021, 14(1): 48. |
[46] | WEBB K M, OÑA I, BAI J, et al. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene[J]. New Phytologist, 2010, 185(2): 568-576. |
[47] | DOSSA G S, QUIBOD I, ATIENZA-GRANDE G, et al. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight[J]. Scientific Reports, 2020, 10(1): 683. |
[48] | ANTONY G, ZHOU J H, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. Plant Cell, 2010, 22(11): 3 864-3 876. |
[49] | PATHAK M D, CHENG C H, FORTUNO M E. Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice[J]. Nature, 1969, 223(5 205): 502-504. |
[50] | YE Y D, XIONG S Y, GUAN X, et al. Insight into rice resistance to the brown planthopper: Gene cloning, functional analysis, and breeding applications[J]. International Journal of Molecular Sciences, 2024, 25(24): 13 397. |
[51] | SHI S J, WANG H Y, ZHA W J, et al. Recent advances in the genetic and biochemical mechanisms of rice resistance to brown planthoppers (Nilaparvata lugens Stål)[J]. International Journal of Molecular Sciences, 2023, 24(23): 16 959. |
[52] | HUANG Z, HE G, SHU L, et al. Identification and mapping of two brown planthopper resistance genes in rice[J]. Theoretical & Applied Genetics, 2001, 102(6-7): 929-934. |
[53] | SHI S J, WANG H Y, NIE L Y, et al. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths[J]. Molecular Plant, 2021, 14(10): 1 714-1 732. |
[54] | DU B, ZHANG W L, LIU B F, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22 163-22 168. |
[55] | HU L, WU Y, WU D, et al. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice[J]. Plant Cell, 2017, 29(12): 3 157-3 185. |
[56] | GUO J P, WANG H Y, GUAN W, et al. A tripartite rheostat controls self-regulated host plant resistance to insects[J]. Nature, 2023, 618(7966): 799-807. |
[57] | CHENG X Y, WU Y, GUO J P, et al. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination[J]. The Plant Journal, 2013, 76(4): 687-698. |
[58] | LIU Y Q, WU H, CHEN H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature Biotechnology, 2015, 33(3): 301-305. |
[59] | 杨远柱, 王凯, 谢志梅, 等. 打造企业商业化育种体系推动水稻新质生产力发展[J]. 中国种业, 2025(5): 1-6. |
[1] | XU Chunchun, JI Long, CHEN Zhongdu, LI Dan, FANG Fuping. Current Challenges and Pathways to Enhancing Large-Scale Per-Unit Yield of Rice in China [J]. China Rice, 2025, 31(4): 1-4. |
[2] | WANG Junrui, CHEN Mingxue, CHEN Hongqi. Research Progress on Low Cadmium Varieties Breeding and Processing Technology of Reducing Cadmium in Rice [J]. China Rice, 2025, 31(4): 100-104. |
[3] | DENG Guofu, DAI Gaoxing, CHEN Weiwei. Review, Achievements, and Prospects of Hybrid Rice Breeding in Guangxi in the Past 50 Years [J]. China Rice, 2025, 31(4): 105-116. |
[4] | QIAN Haoyu, LI Weiwei, CHEN Lin, TANG She, DING Chengqiang, WANG Songhan, JIANG Yu, LIU Zhenghui, LI Ganghua, DING Yanfeng. Establish a Symmetric, High-quality, and Healthy Population is the Key to Achieving Synergistic Improvements in Rice Yield and Quality [J]. China Rice, 2025, 31(4): 13-18. |
[5] | DONG Wei, SHEN Xiqiong, GU Anyu, TU Jian, KUI Limei, JIANG Qiyong, LI Xiaolin. Research Progress and Prospects of Two-Line Hybrid Japonica Rice Breeding [J]. China Rice, 2025, 31(4): 26-31. |
[6] | JIN Xingchen, HUANG Yuheng, XU Jiangmin, WANG Kejian, RAO Yuchun, LIU Chaolei. Research Progress and Prospects of Doubled Haploid Technology in Rice [J]. China Rice, 2025, 31(4): 32-36. |
[7] | XU Qingshan, ZHU Chunquan, YAN Yulian, WANG Hangfeng, LI shangpan, CHI Chunxin, KONG Yali, ZHU Lianfeng, TIAN Wenhao, CAO Xiaochuang, YU Yijun, ZHANG Junhua. Research Progress on Soil Health Cultivation in Paddy Fields [J]. China Rice, 2025, 31(4): 37-43. |
[8] | ZHANG Jianfeng, MA Shihao, CAO Yudong, LI Xiaokun. Types and Improvements of Medium- and Low-Yield Paddy Fields [J]. China Rice, 2025, 31(4): 44-50. |
[9] | FENG Yupeng, LIU Akang, CHEN Danyang, HE Juan, LIANG Jian, WAN Kejiang, E Wendi. Production Situation and Countermeasure Suggestions of Ratoon Rice in China in the New Era [J]. China Rice, 2025, 31(4): 5-8. |
[10] | XIA Yuxin, LING Yufei, FENG Yuan, GU Yuankun, ZHU Haibin, XU Fangfu, LI Guangyan, GAO Hui, WEI Haiyan, ZHANG Hongcheng, HU Qun. Research Progress on Intelligent and Unmanned Technology for Rice Seedling-Raising and Transplanting [J]. China Rice, 2025, 31(4): 51-56. |
[11] | ZHANG Wenyu, WU Sijin, ZHANG Zhigang, DING Fan, HE Jie, HU Lian, LUO Xiwen. Research Progress on Key Technology of Rice Intelligent Harvesting [J]. China Rice, 2025, 31(4): 57-62. |
[12] | WEI Huanhe, MENG Tianyao, CHEN Yinglong, ZUO Wengang, YAO Rongjiang, GAO Pinglei, XU Ke, ZHANG Hongcheng, DAI Qigen. Research and Practice on High Yield Formation and Cultivation Techniques of Rice in Coastal Saline-Alkali Land [J]. China Rice, 2025, 31(4): 63-70. |
[13] | LIU Aimin, TANG Wenbang. Advancement and Development of Mechanized Technology in Hybrid Rice Seed Production and Processing [J]. China Rice, 2025, 31(4): 71-78. |
[14] | WANG Bin, YANG Cheng, WU Penghao, LI Xiaokun. Research on the Water Demand of Rice and Its Influencing Factors [J]. China Rice, 2025, 31(4): 79-85. |
[15] | JIAO Jiabao, LI Lingyi, LIU Yongjian, CHEN Xiangfu, LUO Ju, YANG Baojun, YAO Qing, LIU Shuhua. Research on Rice Pest and Disease Recognition System Based on Improved EfficientNet-V2 [J]. China Rice, 2025, 31(4): 86-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||