中国稻米 ›› 2023, Vol. 29 ›› Issue (4): 38-44.DOI: 10.3969/j.issn.1006-8082.2023.04.007
李逸翔1,2(), 周新桥2, 陈达刚2, 郭洁2, 陈可2, 张容郡1, 饶刚顺1, 刘传光2,*(), 陈友订2
收稿日期:
2023-03-07
出版日期:
2023-07-20
发布日期:
2023-07-26
通讯作者:
*guyliu@tom.com
作者简介:
第一联系人:基金资助:
LI Yixiang1,2(), ZHOU Xinqiao2, CHEN Dagang2, GUO Jie2, CHEN Ke2, ZHANG Ronjun1, RAO Ganshun1, LIU Chuanguang2,*(), CHEN Youding2
Received:
2023-03-07
Online:
2023-07-20
Published:
2023-07-26
Contact:
*guyliu@tom.com
About author:
First author contact:摘要:
γ-氨基丁酸(GABA)是一种动植物中普遍存在的四碳非蛋白质氨基酸。在哺乳动物中GABA是一种重要的抑制性神经递质,介导40 %以上的抑制性神经传导,而在植物中GABA主要参与胁迫响应、调节碳氧平衡和传递信号等多种重要生命活动。富含GABA的稻米对人体具有调节血压、提高肝肾能力和改善睡眠质量等作用。本文综述了水稻品种间GABA含量差异、GABA代谢通路、GABA的保健功能、富集GABA的方法和国内外高GABA稻米的开发应用现状,并展望了高GABA水稻应用前景,以期为高GABA水稻育种及产品开发提供参考。
中图分类号:
李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44.
LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food[J]. China Rice, 2023, 29(4): 38-44.
图1 GABA代谢通路 BADH2,甜菜碱醛脱氢酶;DAO,二胺氧化酶;GABA-T,氨基丁酸转氨酶;GAD,谷氨酸脱羧酶;GDH,谷氨酸脱氢酶;P5CDH,吡咯啉-5-羧酸脱氢酶;P5CS,吡咯啉-5-羧酸合成酶;PAO,多胺氧化酶;SpdS,亚精胺合成酶;SpmS,精胺合成酶;SSADH,琥珀酸半醛脱氢酶。
[1] | JENSEN B L. Somatic development in cleidocranial dysplasia[J]. American Journal of Medical Genetics Part C-Seminars in Medical Genetics, 1990, 35(1): 69-74. |
[2] | MAZZUCOTELLI E, TARTARI A, CATTIVELLI L, et al. Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat[J]. Journal of Experimental Botany, 2006, 57(14): 3 755-3 766. |
[3] | XU B, LONG Y, FENG X, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience[J]. Nature Communications, 2021, doi: 10.1038/s41467-021-21694-3. |
[4] | NAYYAR H, KAUR R, KAUR S, et al. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J]. Journal of Plant Growth Regulation, 2014, 33(2): 408-419. |
[5] | MA X, ZHU C, NA Y, et al. γ-aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings[J]. Physiologia Plantarum, 2016, 158(4): 389-401. |
[6] | 高秋丽, 蒋羽鸽, 罗婷玉, 等. γ-氨基丁酸强化米缓解2型糖尿病模型小鼠胰腺损伤[J]. 卫生研究, 2019, 48(2): 179-199. |
[7] | CELLOT G, CHERUBINI E. Functional role of ambient GABA in refining neuronal circuits early in postnatal development[J]. Frontiers in Neural Circuits, 2013, doi: 10.3389/fncir.2013.00136. |
[8] | AOKI H, FURUYA Y J, ENDO Y, et al. Effect of γ-Aminobutyric acid-enriched tempeh-like fermented soybean (GABA-Tempeh) on the blood pressure of spontaneously hypertensive rats[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(8): 1 806-1 808. |
[9] | FAIT A, FROMM H, WALTER D. Highway or byway: The metabolic role of GABA shunt in plants[J]. Trends in Plant Science, 2007, 13: 1 380-1385. |
[10] | 杨树明, 罗曦, 曾亚文, 等. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性[J]. 西南农业学报, 2009, 22(2):236-240. |
[11] | 柏鹤, 马小定, 曹桂兰, 等. 不同类型特种稻种质营养及功能性成分含量的差异[J]. 植物遗传资源学报, 2017, 18(6):1013-1 022. |
[12] | KARLADEE D, SURIYONG S. γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination[J]. Science Asia, 2012, 38(1): 13-17. |
[13] | 吾建祥, 施南芳, 楼宇涛. 萌芽米中富含γ-氨基丁酸的水稻品种筛选[J]. 浙江农业科学, 2014(6):820-822. |
[14] | 潘阳阳, 陈宜波, 王重荣, 等. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2):121-129. |
[15] | PALANIVELU R, BRASS L, EDLUND A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114(1): 47-59. |
[16] |
SHELP B J, BOWN A W, MCLEAN M D. Metabolism and functions of gamma-aminobutyric acid[J]. Trends in Plant Science, 1999, 4(11): 446-452.
PMID |
[17] | BHATNAGAR P, MINOCHA R, MINOCHA S C. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism[J]. Plant Physiology, 2002, 128(4): 1 455-1 469. |
[18] | SHELP B J, BOZZO G G, TROBACHER C P, et al. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I.Pathway structure[J]. Botany-botanique, 2012, 90(8): 651-668. |
[19] | ALCAZAR R, ALTABELLA T, MARCO F, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231(6): 1 237-1 249. |
[20] | 张紫晋, 任益明, 江迪, 等. 不同大麦籽粒γ-氨基丁酸含量的差异及环境影响[J]. 西南农业学报, 2022, 35(5):1089-1 094. |
[21] |
DEFEUDIS F V. Gamma-aminobutyric acid and cardiovascular function[J]. Experientia, 1983, 39(8): 845-849.
PMID |
[22] | NISHIMURA M, YOSHIDA S I, HARAMOTO M, et al. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure[J]. Journal of Traditional and Complementary Medicine, 2014, 6(1): 66-71. |
[23] | MA P J, LI T, JI F C, et al. Effect of GABA on blood pressure and blood dynamics of anesthetic rats[J]. International Journal of Clinical & Experimental Medicine, 2015, 8(8): 14 296-14 302. |
[24] | SMISMANS A, SCHUIT F, PIPELEERS D. Nutrient regulation of gamma-aminobutyric acid release from islet beta cells[J]. Diabetologia, 1997, 40(12): 1 411-1 415. |
[25] | SOHRABIPOUR S, SHARIFI M R, TALEBI A, et al. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet[J]. European Journal of Pharmacology, 2018, 826(10): 75-84. |
[26] | 刘宇凡, 王泽敏, 王晴鹤, 等. γ-氨基丁酸拮抗2型糖尿病的作用及机制探讨[J]. 营养学报, 2021, 43(3): 265-273. |
[27] |
BATTAGLIOLI G, LIU H, MARTIN D L. Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis[J]. Journal of Neurochemistry, 2003, 86(4): 879-887.
PMID |
[28] | 曹晶晶. 发芽糙米及制品加工过程中γ-氨基丁酸变化研究[D]. 北京: 中国农业科学院, 2018. |
[29] | OHTSUBO K, SUZUKI K, YASUI Y, et al. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder[J]. Journal of Food Composition and Analysis, 2005, 18(4): 303-316. |
[30] | LIU L, ZHAI H, WAN J. Accumulation of γ-aminobutyric acid in giant-embryo rice grain in relation to glutama tedecarboxy lase activity and its gene expression during water soaking[J]. Cereal Chemistry, 2005, 82 (2): 191-197. |
[31] | KOMATSUZAKI N, TSUKAHARA K, TOYOSHIMA H, et al. Effect of soaking and gaseous treatment on GABA content in germinated brown rice[J]. Journal of Food Engineering, 2007, 78(2): 556-560. |
[32] | SAIKUSA T, HORINO T, MORI Y. Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(12): 2 291-2 292. |
[33] | JANNOEY P, NIAMSUP H, LUMYONG S, et al. γ-aminobutyric acid (GABA) accumulations in rice during germination[J]. Chiang Mai Journal of Science, 2009, 37(1): 124-133. |
[34] | KHAOSA-ARD T, SONGSERMPONG S. Influence of germination time on the GABA content and physical properties of germinated brown rice[J]. Asian Journal of Food and Agro-Industry, 2012, 5(4): 270-283. |
[35] | THITINUNSOMBOON S, KEERATIPIBUL S, BOONSIRIWIT A. Enhancing gamma-aminobutyric acid content in germinated brown rice by repeated treatment of soaking and incubation[J]. Food Science & Technology International, 2013, 19(1): 25-33. |
[36] | 康文瀚, 田洪磊, 程卫东, 等. 糙米发芽富集γ-氨基丁酸工艺优化的研究[J]. 食品工业, 2016, 37(5):78-82. |
[37] | 刘颖, 王秋, TATYANA K K, 等. 富含γ-氨基丁酸的发芽糙米制备工艺的研究[J]. 食品工业, 2015, 36(4):82-86. |
[38] | 袁建, 李倩, 朱贞映, 等. 高γ-氨基丁酸发芽糙米工艺条件的优化研究[J]. 粮食与饲料工业, 2014, 12(12):32-36. |
[39] | 丁俊胄. 低氧胁迫与超声场激发对发芽糙米中γ-氨基丁酸积累的影响及其代谢机制[D]. 武汉: 华中农业大学, 2016. |
[40] | DING J Z, YANG T W, FENG H, et al. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions[J]. Joural of Agricultural & Food Chemistry, 2016, 64(5): 1 094-1 102. |
[41] | SHIGEMATSU T, MURAKAMI M. Bioconversion of glutamic acid to γ-aminobutyric acid (GABA) in brown rice grains induced by high pressure treatment[J]. Japan Journal of Food Engineering, 2010, 11(4): 189-199. |
[42] | 陈春旭, 王利勤, 郭元新, 等. 盐胁迫对发芽糙米富集γ-氨基丁酸及蛋白组分变化的影响[J]. 食品科学, 2018, 39(5):87-92. |
[43] | 马丽, 唐坚, 王梦晗, 等. 低温胁迫对糙米发芽及γ-氨基丁酸含量的影响[J]. 食品工业科技, 2015, 36(4):278-281. |
[44] | 魏振承, 张名位, 池建伟, 等. 引进巨胚稻与普通稻的米质和营养成分分析比较[J]. 植物遗传资源学报, 2005, 6(4):386-389. |
[45] | 杨艳荔. 优质巨胚稻营养成分分析及发芽试验[D]. 福州: 福建农林大学, 2008. |
[46] | SATOH H, OMUAR T. New endosperm mutations induced by chemical mutagens in rice Oryza sativa L[J]. Japanese Journal of Breeding, 2008, 31(3): 316-326. |
[47] | MAEDA H, NEMOTO H, IIDA S, et al. A new rice variety with giant embryos, “Haiminori”[J]. Breeding Science, 2001, 51(3): 211-213. |
[48] | 庞乾林. 巨大胚等新性状稻米的遗传育种研究取得进展──“巨胚1号”水稻新品系育成[J]. 中国稻米, 1997(1):15. |
[49] | 章清杞, 杨艳荔, 李毓, 等. 籼稻巨胚不育系龙特浦geA的选育[J]. 核农学报, 2003, 17(4):245-248. |
[50] | 朴钟泽, 张建明, 陆家安, 等. 功能性水稻新品种巨胚粳1号选育及应用[J]. 中国稻米, 2009, 15(3):34-35. |
[51] | 任永刚, 张建中, 张红梅, 等. 通过成熟胚离体培养获得巨胚水稻新品种及性状和稻米品质分析[J]. 上海师范大学学报(自然科学版), 2011, 40(3):289-294. |
[52] | 蔡治君, 黄菊, 王英存, 等. 分子标记辅助育种选育黑色香型巨胚水稻[J]. 分子植物育种, 2014, 12(6):1112-1 118. |
[53] | 王萌, 李建粤. 分子标记辅助选育红米巨胚水稻[J]. 上海师范大学学报(自然科学版), 2017, 46(5):647-653. |
[54] | 章清杞, 李美德, 黄荣华. 巨胚糯稻恢复系福巨糯2号的选育[J]. 杂交水稻, 2020, 35(5):27-30. |
[55] | AKAMA K, TAKAIWA F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]. Journal of Experimental Botany, 2007, 58(10): 2 699-2 707. |
[56] | AKAMA K, KANETOU J, SHIMOSAKI S, et al. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats[J]. Transgenic Research, 2009, 18(6): 865-876. |
[57] | AKAMA K, AKTER N, ENDO H, et al. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains[J]. Rice, 2020, 13(1): 1-12. |
[58] | 周露, 沈贝贝, 白苏阳, 等. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(9):1305-1 312. |
[59] | 章秀福, 王丹英, 方福平, 等. 中国粮食安全和水稻生产[J]. 农业现代化研究, 2005, 26(2):85-88. |
[60] | GONG J, HUANG J, XIAO G, et al. Determination of γ‐aminobutyric acid in Chinese rice wines and its evolution during fermentation[J]. Journal of the Institute of Brewing, 2017, 3(9): 417-422. |
[61] | 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220. |
[62] | WANG Z W, CHEN Z, ZHANG L F, et al. China hypertension survey investigators. Status of hypertension in China: Results from the China hypertension survey, 2012—2015[J]. Circulation, 2018, 137(22): 2 344-2 356. |
[63] | KOHAMA Y, MATSUMOTO S, MIMURA T, et al. Isolation and identification of hypotensive principles in red-mold rice[J]. Chemical & Pharmaceutical Bulletin, 1987, 35(6): 2 484-2 489. |
[64] | TSUJI K, ICHIKAWA T, TANABE N, et al. Antihypertensive activities of beni-koji extracts and γ-aminobutyric acid in spontaneously hypertensive rats[J]. The Japanese Journal of Nutrition and Dietetics, 2010, 50(5): 285-291. |
[65] | KAWAKAMI K, YAMADA K, YAMADA T, et al. Antihypertensive effect of γ-aminobutyric acid-enriched brown rice on spontaneously hypertensive rats[J]. Journal of Nutritional Science & Vitaminology, 2018, 64(1): 56-62. |
[66] | SINGH N, SINGH H, KAUR K, et al. Relationship between the degree of milling, ash distribution pattern and conductivity in brown rice[J]. Food Chemistry, 2000, 69(2): 147-151. |
[67] | MARERO L M, PAYUMO E M, LIBRANDO E C, et al. Technology of weaning food formulations prepared from germinated cereals and legumes[J]. Journal of Food Science, 1988, 53(5): 1 391-1 395. |
[68] | 华艳. 糙米发芽工艺优化及应用研究[D]. 泰安: 山东农业大学, 2021. |
[69] | 苏登. 发芽糙米富含 GABA 的杂交稻良种及速食粥工艺研究[D]. 福州: 福建农林大学, 2015. |
[70] | 尹永祺, 王金凤, 方维明, 等. 高γ-氨基丁酸营养干面条的研制[J]. 食品工业科技, 2018, 39(3):148-152. |
[71] |
CORNEJO F, CACERES P J, MARTINEZ-VILLALUENGA C, et al. Effects of germination on the nutritive value and bioactive compounds of brown rice breads[J]. Food Chemistry, 2015, 173: 298-304.
PMID |
[72] | 周艳华, 李涛, 刘颖. 富含γ-氨基丁酸保健啤酒的酿造工艺研究[J]. 食品工业, 2018, 39(5):83-87. |
[73] | 范明成, 谢智鑫, 刘容旭, 等. 超高压处理对发芽糙米酒中γ-氨基丁酸及挥发性成分的影响[J]. 食品工业科技, 2019, 40(20):29-35. |
[74] | 盖伦, 姜帆, 韩建春. 以发芽糙米为主要原料生产富含γ-氨基丁酸白酒[J]. 酿酒, 2013, 40(6):102-105. |
[75] | CACERES P J, PENAS E, MARTINEZ-VILLALUENGA C, et al. Development of a multifunctional yogurt-like product from germinated brown rice[J]. Lwt-food Science and Technology, 2019, 99: 306-312. |
[76] | 傅金凤, 黄美娜, 朱培渤, 等. 响应面法优化发芽糙米酒茶复合饮料制备工艺[J]. 食品工业科技, 2022, 43(15):193-201. |
[77] | 李飞, 代娇阳, 牛宇含, 等. 发芽糙米活性乳酸菌饮料的研制[J]. 粮食与油脂, 2021, 34(11):121-124. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[5] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[6] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[7] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[8] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[9] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[10] | 刘伟, 李胜男, 宋梦秋, 阮双, 何水华, 薛文侠, 李洪彬, 张真雨. 浅析我国粳稻育种现状及发展思路[J]. 中国稻米, 2023, 29(4): 9-12. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||