[1] 石学彬,刘康. 我国农作物品种审定制度变革与现代种业发展刍议[J]. 农业科技管理,2018(3):62-65.
[2] 吕凤,杨帆,范滔,等. 1977—2018 年水稻品种审定数据分析[J]. 中国种业,2019(2):29-40.
[3] 马荣荣,许德海,王晓燕,等. 籼粳亚种间杂交稻甬优6号超高产株形特征与竞争优势分析[J]. 中国水稻科学,2007,21(3):281-286.
[4] 王林友,王建军,张礼霞,等. 杂交稻浙优18特征特性及栽培技术[J]. 浙江农业科学,2013(4):364-366.
[5] 吴明国,林建荣,宋昕蔚,等. 籼粳亚种间杂交水稻新组合春优 84 的选育[J]. 杂交水稻,2014,29(2):19-21.
[6] 高荣村,陆金根,李金军. 高柱头外露率、优质粳稻不育系嘉66A的选育及应用[J]. 中国稻米,2016,22(3):100-101.
[7] 王哉,高荣村,张健康,等. 籼粳杂交稻嘉优中科3号的父母本特性及制种技术[J]. 浙江农业科学,2017,58(9):1 505-1 506.
[8] 林建荣,宋昕蔚,吴明国,等. 籼粳超级杂交稻育种技术创新与品种培育[J]. 中国农业科学,2016,49(2):207-218.
[9] 杨振玉,李志彬,东丽,等. 中国杂交粳稻发展与展望[J]. 科学通报,2016,61(35):3 770-3 777.
[10] 隋国民. 杂交粳稻研究进展与发展策略[J]. 辽宁农业科学,2018(1):51-55.
[11] 黎裕,王建康,邱丽娟,等. 中国作物分子育种现状与发展前景[J]. 作物学报,2010,36(9):1 425-1 430.
[12] 曹立勇,庄杰云,占小登,等. 抗白叶枯病杂交水稻的分子标记辅助育种[J]. 中国水稻科学,2003,17(2):184-186.
[13] 周宇爝. 白叶枯病抗性基因Xa-21、Xa-23及Xa-4在杂交水稻亲本中的聚合及其聚合效应分析[D]. 雅安:四川农业大学,2004.
[14] 柳武革,王丰,肖汉祥,等. 利用分子标记辅助选择改良水稻恢复系的稻瘿蚊抗性[J]. 中国水稻科学,2010,24(6):581-586.
[15] 王岩,付新民,高冠军,等. 分子标记辅助选择改良优质水稻恢复系明恢 63 的稻米品质[J]. 分子植物育种,2009,7(4):661-665.
[16] 牛凯萌,徐俊波,钟亮,等. 利用分子标记辅助选择改良浙恢7954的稻米品质[J]. 浙江农业学报,2017,29(8):1 221-1 227.
[17] 邓兴旺,王海洋,唐晓艳,等. 杂交水稻育种将迎来新时代[J]. 中国科学:生命科学,2013,43(10):864-968.
[18] ZENG D, TIAN Z, RAO Y, et al. Rational design of high-yield and superior-quality rice[J]. Nature Plant, 2017, 3: 17031.
[19] LI M, LI X, ZHOU Z, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Front Plant Sci, 2016, 7: 377.
[20] WANG Y, GENG L, YUAN M, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9[J]. Plant Cell Rep, 2017, 36(8): 1 333- 1 343.
[21] SHEN L, WANG C, FU Y, et al. QTL editing confers opposing yield performance in different rice varieties[J]. J Integr Plant Biol, doi: 10.1111/jipb.12501.
[22] XU R, YANG Y, QIN R, et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9- mediated multiplex genome editing in rice[J]. J Genet Genomics, 2016, 43(8): 529-532.
[23] MA X, ZHANG Q, ZHU Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol Plant, 2015, 8(8): 1274-1284.
[24] WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS ONE, 2016, 11(4): e0154027.
[25] SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnol, 2017, 35(5): 441-443
[26] LI Q, ZHANG D, CHEN M, et al. Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9[J]. J Genet Genomics, 2016, 43(6): 415-419.
[27] ZHOU H, HE M, LI J, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J]. Sci Rep, 2016, 6: 37395.
[28] WANG C Q, LIU Y, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nat Biotechnol, 2019, 37(3): 283-286.
[29] KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7737): 91-95.
[30] 杨玉婷. 日本稻米科技研究发展[J]. 农业生技产业季刊,2016,2:26-34.
[31] 印度培育出低血糖生成指数的水稻改良品种[N].今日印度,2018-01-12.
[32] 翟振武,陈佳鞠,李龙. 2015—2100 年中国人口与老龄化变动趋势[J]. 人口研究,2017,41(4):60-71.
[33] HUANG X, YANG S, GONG J, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis[J]. Nat Commun, 2015, 6: 6258.
[34] 程式华. 杂交水稻育种材料和方法研究的现状及发展趋势[J]. 中国水稻科学,2000,14(3):165-169. |