[1] 段居琦,周广胜. 中国双季稻种植区的气候适宜性研究[J]. 中国农业科学,2012,45(2):218-227.
[2] 邹应斌,戴魁根. 湖南发展双季稻生产的优势[J]. 作物研究,2008,22(4):209-213.
[3] 徐春春,纪龙,陈中督,等. 2017年我国水稻产业形势分析及2018年展望[J]. 中国稻米,2018,24(2):1-3.
[4] 徐春春,纪龙,陈中督,等. 2018年我国水稻产业形势分析及2019年展望[J]. 中国稻米,2019,25(2):1-3.
[5] 肖国樱,肖友伦,李锦江,等. 高效是当前水稻育种的主导目标[J]. 中国水稻科学,2019,33(4):287-292.
[6] HORI K, MATSUBARA K, YANO M. Genetic control of flowering time in rice: integration of mendelian genetics and genomics[J]. Theor Appl Genet, 2016, 129(12): 2 241-2 252.
[7] KOMIYA R, IKEGAMI A, TAMAKI S, et al. Hd3a and RFT1 are essential for flowering in rice[J]. Development, 2008, 135(4): 767-774.
[8] KOMIYA R, YOKOI S, SHIMAMOTO K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice[J]. Development, 2009, 136(20): 3 443-3 450.
[9] YANO M, KATAYOSE Y, ASHIKARI M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell, 2000, 12(12): 2 473-2 483.
[10] DOI K, IZAWA T, FUSE T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes Dev, 2004, 18(8): 926-936.
[11] GAO H, JIN M, ZHENG X M, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice[J]. Proc Natl Acad Sci USA, 2014, 111(46): 16 337-16 342.
[12] YAN W, LIU H, ZHOU X, et al. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice[J]. Cell Res, 2013, 23(7): 969-971.
[13] XUE W, XING Y, WENG X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nat Genet, 2008, 40(6): 761-767.
[14] WEI X, XU J, GUO H, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously[J]. Plant Physiol, 2010, 153(4): 1 747-1 758.
[15] 徐俊锋,魏祥进,江玲,等. 我国部分早籼品种及杂交早籼骨干亲本抽穗期遗传分析[J]. 中国水稻科学,2010,24(3):215-222.
[16] ZHU Y J, FAN Y Y, WANG K, et al. Rice Flowering Locus T 1 plays an important role in heading date influencing yield traits in rice[J]. Sci Rep, 2017, 7(1): 4 918.
[17] 陈俊宇,王凯,龚俊义,等. RFT1与Hd1所在区间对水稻抽穗期、株高和千粒重的作用[J]. 中国水稻科学,2013,27(2):117-121.
[18] ZHANG H W, FAN Y Y, ZHU Y J, et al. Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]. BMC Genet, 2016, 17(1): 98.
[19] ZHENG K, HUANG N, BENNETT J, et al. PCR-based marker-assisted selection in rice breeding[M]. IRRI Discussion Paper Series No.12. Manila: International Rice Research Institute, 1995.
[20] CHEN X, TEMNYKH S, XU Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice[J]. Theor Appl Genet, 1997, 95(4): 553-567.
[21] WANG S, BASTEN C J, ZENG Z B. Windows QTL Cartographer 2.5[M]. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012.
[22] SAS Institute Inc. SAS/STAT User’s Guide[M]. Cary, NC: SAS Institute, 1999.
[23] DAI W M, ZHANG K Q, WU J R, et al. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice[J]. Euphytica, 2008, 160(3): 317-324.
[24] NEMOTO Y, NONOUE Y, YANO M, et al. Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7[J]. Plant J, 2016, 86(3): 221-233.
[25] ZHANG Z H, ZHU Y J, WANG S L, et al. Importance of the interaction between heading date genes Hd1 and Ghd7 for controlling yield traits in rice[J]. Int J Mol Sci, 2019, 20(3): 516.
[26] CHEN J Y, GUO L, MA H, et al. Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice[J]. Theor Appl Genet, 2014, 127(11): 2 515-2 524.
[27] WU W, ZHENG X M, LU G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proc Natl Acad Sci USA, 2013, 110(8): 2 775-2 780.
[28] BIAN X F, LIU X, ZHAO Z G, et al. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1[J]. Plant Cell Rep, 2011, 30(12): 2 243-2 254.
[29] MATSUBARA K, OGISO-TANAKA E, HORI K, et al. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering[J]. Plant Cell Physiol, 2012, 53(4): 709-716.
[30] SHIBAYA T, HORI K, OGISO-TANAKA E E, et al. Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice[J]. Plant Cell Physiol, 2016, 57(9): 1 828-1 838.
[31] CHEN L, ZHENG Z, WU W, et al. Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice[J]. Mol Breed, 2015, 35(11): 206.
[32] ZHONG Z, WU W, WANG H, et al. Fine mapping of a minor-effect QTL, DTH12, controlling heading date in rice by up-regulation of florigen genes under long-day conditions[J]. Mol Breed, 2014, 34(2): 311-322.
[33] TAKEUCHI Y, EBITANI T, YAMAMOTO T, et al. Development of isogenic lines of rice cultivar koshihikari with early and late heading date by marker-assisted selection[J]. Breed Sci, 2006, 56(4): 405-413.
[34] ZHAO J, CHEN H, REN D, et al. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice[J]. New Phytol, 2015, 208(3): 936-948.
[35] FUJINO K, OBARA M, IKEGAYA T. Establishment of adaptability to the northern-limit of rice production[J]. Mol Genet Genomics, 2019, 294(3): 729-737. |