中国稻米 ›› 2021, Vol. 27 ›› Issue (4): 92-100.DOI: 10.3969/j.issn.1006-8082.2021.04.019
任俊#(), 曹跃炫#, 黄勇, 董慧荣, 刘庆, 王克剑*(
)
收稿日期:
2021-05-13
出版日期:
2021-07-20
发布日期:
2021-07-20
通讯作者:
王克剑
作者简介:
#共同第一作者:82101172206@caas.cn
基金资助:
Jun REN#(), Yuexuan CAO#, Yong HUANG, Huirong DONG, Qing LIU, Kejian WANG(
)
Received:
2021-05-13
Online:
2021-07-20
Published:
2021-07-20
About author:
#Co-first author: 82101172206@caas.cn
摘要:
CRISPR/Cas系统作为一种新兴的基因编辑系统,以其简单、高效、特异性高等特点已广泛应用于植物功能基因组研究和品种改良。在本文中,首先,我们系统总结了CRISPR/Cas技术及其衍生技术在植物中的开发和优化;其次,重点介绍了基于基因组编辑技术的水稻种质和品种改良的最新进展,并描述了基于基因编辑技术的水稻育种新策略,这是传统育种很难实现的;最后,还讨论了基因编辑技术在未来作物和粮食生产中所要面对的挑战。
中图分类号:
任俊, 曹跃炫, 黄勇, 董慧荣, 刘庆, 王克剑. 基因编辑技术及其水稻中的发展和应用[J]. 中国稻米, 2021, 27(4): 92-100.
Jun REN, Yuexuan CAO, Yong HUANG, Huirong DONG, Qing LIU, Kejian WANG. Development and Application of Genome Editing Technology in Rice[J]. China Rice, 2021, 27(4): 92-100.
[1] | FUKAGAWA N K, ZISKA L H. Rice: importance for global nutrition[J]. Journal of Nutritional Science and Vitaminolog, 2019, 65: 2-3. |
[2] | BIBIKOVA M, BEUMER K, TRAUTMAN J K, et al. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5 620): 764. |
[3] | BOGDANOVE A J, VOYTAS D F. TAL effectors: customizable proteins for DNA targeting[J]. Science, 2011, 333(6 051): 1 843-1 846. |
[4] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
[5] | MOJICA F J, DIEZ-VILLASENOR C, GARCíA-MARTíNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182. |
[6] | SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(8): 686-688. |
[7] | SHEN L, HUA Y, FU Y, et al. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice[J]. Science China-Life Sciences, 2017, 60(5): 506-515. |
[8] | POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653-663. |
[9] | MENG X, HU X, LIU Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice[J]. Science China-Life Sciences, 2018, 61(1): 122-125. |
[10] | HU X, WANG C, LIU Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system[J]. Journal of Genetics Genomics, 2017, 44(1): 71-73. |
[11] | XU R, QIN R, LI H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system[J]. Plant Biotechnology Journal, 2017, 15(6): 713-717. |
[12] | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
[13] | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science, 2016, 353(6299): aaf5573. |
[14] | QIN R, LI J, LI H, et al. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing[J]. Plant Biotechnology Journal, 2019, 17(4): 706-708. |
[15] | XU Y, MENG X, WANG J, et al. ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice[J]. Science China-Life Sciences, 2020, 63(3): 450-452. |
[16] | HU X, MENG X, LIU Q, et al. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnology Journal, 2018, 16(1): 292-297. |
[17] | HU X, WANG C, FU Y, et al. Expanding the range of CRISPR/Cas9 genome editing in rice[J]. Molecular Plant, 2016, 9(6): 943-945. |
[18] | ZHONG Z, SRETENOVIC S, REN Q, et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG[J]. Molecular Plant, 2019, 12(7): 1 027-1 036. |
[19] | WANG J, MENG X, HU X, et al. xCas9 expands the scope of genome editing with reduced efficiency in rice[J]. Plant Biotechnology Journal, 2019, 17(4): 709-711. |
[20] | ZENG D, LI X, HUANG J, et al. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice[J]. Plant Biotechnology Journal, 2020, 18(6): 1 348-1 350. |
[21] | Qin R, Li J, Liu X, et al. SpCas9-NG self-targets the sgRNA sequence in plant genome editing[J]. Nature Plants, 2020, 6(3): 197-201. |
[22] | REN J, MENG X, HU F, et al. Expanding the scope of genome editing with SpG and SpRY variants in rice[J]. Science China-Life Sciences, 2021, doi: 10.1007/s11427-020-1883-5. |
[23] | XU Z, KUANG Y, REN B, et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition[J]. Genome Biology, 2021, 22(1): 6. |
[24] | KANG B C, YUN J Y, KIM S T, et al. Precision genome engineering through adenine base editing in plants[J]. Nature Plants, 2018, 4(7): 427-431. |
[25] | LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19(1): 59. |
[26] | LI J, SUN Y, DU J, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529. |
[27] | LU Y, ZHU J K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 523-525. |
[28] | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 441-443. |
[29] | YAN F, KUANG Y, REN B, et al. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice[J]. Molecular Plant, 2018, 11(4): 631-634. |
[30] | ZONG Y, WANG Y, LI C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 438-440. |
[31] | ZONG Y, SONG Q, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, doi: 10.1038/nbt.4261. |
[32] | ZHANG X, ZHU B, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. |
[33] | LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. |
[34] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. |
[35] | HUA K, JIANG Y, TAO X, et al. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 167-2 169. |
[36] | LI H, LI J, CHEN J, et al. Precise modifications of both exogenous and endogenous genes in rice by prime editing[J]. Molecular Plant, 2020, 13(5): 671-674. |
[37] | LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. |
[38] | TANG X, SRETENOVIC S, REN Q, et al. Plant prime editors enable precise gene editing in rice cells[J]. Molecular Plant, 2020, 13(5): 667-670. |
[39] | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. |
[40] | KIM H K, YU G, PARK J, et al. Predicting the efficiency of prime editing guide RNAs in human cells[J]. Nature Biotechnology, 2021, 39(2): 198-206. |
[41] | LI J, LI H, CHEN J, et al. Toward precision genome editing in crop plants[J]. Molecular Plant, 2020, 13(6): 811-813. |
[42] | 秦瑞英,魏鹏程. Prime editing引导植物基因组精确编辑新局面[J].遗传,2020,42(6):519-523. |
[43] | KUSANO M, YANG Z, OKAZAKI Y, et al. Using metabolomic approaches to explore chemical diversity in rice[J]. Molecular Plant, 2015, 8(1): 58-67. |
[44] | CHE R, TONG H, SHI B, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2: 15 195. |
[45] | DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2015, 2: 15 203. |
[46] | DUAN P, XU J, ZENG D, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[47] | FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[48] | ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[49] | LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[50] | QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1 666-1 680. |
[51] | WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[52] | WANG Y, XIONG G, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[53] | ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 534-21 539. |
[54] | CHEN Y Y, ZHU A K, XUE P, et al. Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice[J]. Rice Science, 2020, 27(5): 405-413. |
[55] | CUI Y, HU X, LIANG G, et al. Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9 [J]. Plant Biotechnology Journal, 2020, 10.1111/pbi.13370. |
[56] | LV Y, SHAO G, JIAO G, et al. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351. |
[57] | MIAO C, WANG D, HE R, et al. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnology Journal, 2020, 18(2): 491-501. |
[58] | RAGHAVENDRA A S, GONUGUNTA V K, CHRISTMANN A, et al. ABA perception and signalling[J]. Trends in Plant Science, 2010, 15(7): 395-401. |
[59] | MIAO C, XIAO L, HUA K, et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 6 058-6 063. |
[60] | FIAZ S, AHMAD S, NOOR M A, et al. Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities[J]. International Journal of Molecular Sciences, 2019, doi: 10.3390/ijms20040888. |
[61] | ZHAO D S, LI Q F, ZHANG C Q, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1): 1 240. |
[62] | CAGAMPANG G B, PEREZ C M, JULIANO B O. A gel consistency test for eating quality of rice[J]. Journal of the Science of Food and Agriculture, 1973, 24(12): 1 589-1 594. |
[63] | SANO Y. Differential regulation of waxy gene expression in rice endosperm[J]. Theoretical and Applied Genetics, 1984, 68(5): 467-473. |
[64] | TIAN Z, QIAN Q, LIU Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21 765. |
[65] | FEI Y Y, YANG J, WANG F Q, et al. Production of two elite glutinous rice varieties by editing Wx gene[J]. Rice Science, 2019, 26(2): 118-124. |
[66] | XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[67] | HUANG L, LI Q, ZHANG C, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 164-2 166. |
[68] | ZENG D, LIU T, MA X, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 385-2 387. |
[69] | CHEN S, YANG Y, SHI W, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1 850-1 861. |
[70] | SHAO G N, XIE L H, JIAO G A, et al. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice[J]. Rice Science, 2017, 31(2): 216-222. |
[71] | ASHOKKUMAR S, JAGANATHAN D, RAMANATHAN V, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PLoS One, 2020, 15(8):0237018. |
[72] | TANG Y, ABDELRAHMAN M, LI J, et al. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice[J]. Plant Biotechnology Journal, 2020, doi: 10.1111/pbi.13514. |
[73] | SAVARY S, FICHE A, AUBERTOT J N, et al. Crop losses due to diseases and their implications for global food production losses and food security[J]. Food Security, 2012, 4(4): 519-537. |
[74] | 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报,2018,83(1):35-38. |
[75] | OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1 344-1 350. |
[76] | LI C, LI W, ZHOU Z, et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice[J]. Plant Biotechnology Journal, 2020, 18(2): 313-315. |
[77] | WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): 0154027. |
[78] | JIN M, JUN C, MIN W, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany, 2018, (5): 5. |
[79] | NAWAZ G, USMAN B, PENG H, et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes, 2020, 11(7). |
[80] | AKBAR N, NADEEM, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[81] | SUN Y, ZHANG X, WU C, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant, 2016, 9(4): 628-631. |
[82] | LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016, 2: 16 139. |
[83] | LIU L, KUANG Y, YAN F, et al. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2[J]. Plant Biotechnology Journal, 2021, 19(1): 5-7. |
[84] | LIU S M, JIANG J, LIU Y, et al. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2): 88-97. |
[85] | LATA C, PRASAD M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of Experimental Botany, 2011, 62(14): 4 731-4 748. |
[86] | WANG B, ZHONG Z H, ZHANG H H, et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice[J]. Frontiers in Plant Science, 2019, 26(2): 98-108. |
[87] | 郭叔普. “杂交水稻之父”袁隆平院士谈我国两系法杂交水稻研究的形势与任务[J]. 安徽农业,1997(6):2. |
[88] | 邓鸿德,谭志军. 水稻无融合生殖研究现状及进展[J]. 世界农业,1992(9):21-23. |
[89] | OZIAS-AKINS P, VAN DIJK P J. Mendelian genetics of apomixis in plants[J]. Annual Review of Genetics, 2007, 41: 509-537. |
[90] | KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7 737): 91-95. |
[91] | MIEULET D, JOLIVET S, RIVARD M, et al. Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1 242-1 254. |
[92] | WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[93] | KELLIHER T, STARR D, Richbourg L, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction[J]. Nature, 2017, 542(7 639): 105-109. |
[94] | LIU C, LI X, MENG D, et al. A 4-bp Insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize[J]. Molecular Plant, 2017, 10(3): 520-522. |
[95] | LIU X, QIN R, LI J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnology Journal, 2020, 18(9): 1 845-1 847. |
[96] | KUANG Y, LI S, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular Plant, 2020, 13(4): 565-572. |
[97] | LOPEZ-MARQUES R L, NORREVANG A F, ACHE P, et al. Prospects for the accelerated improvement of the resilient crop quinoa[J]. Journal of Experimental Botany, 2020, 71(18): 5 333-5 347. |
[98] | YU H, LIN T, MENG X, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, doi: 10.1016/j.cell.2021.01.013. |
[99] | LIN Q, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, doi:10.1038/s41587-021-00868-w. |
[100] | LIU Q, JIAO X, MENG X, et al. FED: a web tool for foreign element detection of genome-edited organism[J]. Science China-Life Sciences, 2021, 64(1): 167-170. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||