[1] |
OU S H. Rice diseases, eds[M]. Kew, Surrey: Common Wealth Mycological Institute, UK, 1985: 109-201.
|
[2] |
SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2009, 27(3): 141-150.
|
[3] |
MOYTRI R, JIA Y L, RICHARA A C. Structure, function, and blast resistance genes[J]. Acta Agronomica Sinica, 2012, 38(3): 381-393.
|
[4] |
LIANG T M, GUO X R, CHEN Z Q, et al. Identification and gene mapping of a blast disease resistance gene in rice line IR65482[J]. Molecular Plant Breeding, 2018, 16(13): 4 308-4 313.
|
[5] |
DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965.
|
[6] |
杨小林, 戚华雄, 殷得所, 等. 水稻稻瘟病抗性 QTL 的定位分析[J]. 植物病理学报, 2012, 42(6):600-607.
|
[7] |
刘文强, 李小湘, 王淑红, 等. 水稻稻瘟病抗性基因研究进展[J]. 杂交水稻, 2009, 24(3):1-7.
|
[8] |
YANG H M, JIA M H, JIA Y L, et al. Molecular mappig of four blast resistance genes using recombinant inbred line of 93-11 and Nipponbare[J]. Plant Biology, 2013, 56(4): 91-97.
|
[9] |
RAHIM H A, BHUIYAN M A, LIM L S, et al. Identification of quantitative trait loci for blast resistance in BC2F3 and BC2F5 advanced backcross families of rice[J]. Genetics and Molecular Research, 2012, 11(3): 3 277-3 289
|
[10] |
KARAMIAN F, NEZHAD A, ZAEIM A N, et al. Blast disease in rice: A review[J]. International Journal of Scientific Research in Science and Technology, 2015, 5(3): 228-232.
|
[11] |
刘佳, 李志, 高冠军, 等. 利用高世代回交群体定位水稻光谱抗稻瘟病 QTL[J]. 分子植物育种, 2015, 13(10):2155-2 162.
|
[12] |
辛威. 寒地粳稻种质资源稻瘟病抗性鉴定及基因定位[D]. 哈尔滨: 东北农业大学, 2017.
|
[13] |
杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展[J]. 植物学报, 2019, 54(2):265-276.
|
[14] |
李仕贵, 王玉平, 黎汉云, 等. 利用微卫星标记鉴定水稻的稻瘟病抗性[J]. 生物工程学报, 2000, 16(3):324-327.
|
[15] |
董巍, 李信, 晏斌, 等. 利用分子标记辅助选择改良培矮64S的稻瘟病抗性[J]. 分子植物育种, 2010, 8(5):853-860.
|
[16] |
文绍山, 高必军. 利用分子标记辅助选择将抗稻瘟病基因Pi-9( t)渗入水稻恢复系泸恢17[J]. 分子植物育种, 2012, 10 (1):42-47.
|
[17] |
潘素君. 广谱抗稻瘟病基因Pi9的应用和进化研究[D]. 长沙: 湖南农业大学, 2006.
|
[18] |
DEAN R, VANKAN J A L, PRETORIUS Z A, et al. The top10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
|
[19] |
王云锋, 王长秘, 李春琴, 等. 稻瘟病菌侵染时水稻防御体系对外源茉莉酸的响应分析[J]. 南方农业学报, 2018, 49(7):1324-1 331.
|
[20] |
农业部种子管理局. NY/T 2646—2014,水稻品种试验稻瘟病抗性鉴定与评价技术规程[S]. 北京: 中华人民共和国农业部,2014.
|
[21] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4 321-4 326.
|
[22] |
MUDALKAR S, GOLLA R, GHATTY S, et al. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa, L. using Illumina GAIIX sequencing platform and identification of SSR markers[J]. Plant Molecular Biology, 2014, 84(1/2): 159-171.
|
[23] |
International Rice Genome Sequencing Project, SASAKI T. The map-based sequence of the rice genome[J]. Nature, 2005, 436: 793-800.
|
[24] |
ALTSCHUL S F, GISH W R, MILLER W B, et al. Basic local alignment search tool (BLAST)[J]. Journal of Molecular Biology, 2012, 215(3): 403-410.
|
[25] |
LI H, DUR B R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1 754-1 760.
|
[26] |
TAKAGI H, ABE A, YOSHIDA K, et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. Plant Journal, 2013, 74: 174-183.
|
[27] |
RYM F, HIROKI T, MULUNEH T, et al. MutMap+: Genetic mapping and mutant identification without crossing in rice[J]. PLoS One, 2013, 8(7): e68529.
|
[28] |
HAN Y C, LV P, HOU S L, et al. Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in sorghum (Sorghum bicolor L. Moench)[J]. PLoS One, 2015, 10: e0127065.
|
[29] |
LUO X D, LIU J, ZHAO J, et al. Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff.by QTL-seq of seedlings[J]. Journal of Integrative Agriculture, 2018, 17(2): 265-275.
|
[30] |
CHEN S, WANG L, QUE Z Q, et al. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No.1[J]. Theoretical and Applied Genetics, 2005, 111(8): 1 563-1 570.
|
[31] |
YOU Q Y, ZHAI K R, YANG D L, et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance[J]. Cell Host Microbe, 2016, 20(6): 758-769.
|
[32] |
LIU D F, CHEN X J, LIU J Q, et al. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance[J]. Journal of Experimental Botany, 2012, 63(10) : 3 899-3 911.
|
[33] |
QIU D Y, XIAO J, DING X H, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-499.
|
[34] |
ABBRUSCATO P, NEPUSZ T, MIZZI L, et al. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast[J]. Molecular Plant Pathology, 2012, 13(8): 828-41.
|
[35] |
LIN F, CHEN S, QUE Z Q, et al. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3): 1 871-1 880.
|
[36] |
TAKAHASHI A, HAYASHI N, MIYAO A, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. BMC Plant Biology, 2010,10: 175.
|
[37] |
LIU X L, WANG L, WANG X W, et al. Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice[J]. The Plant Journal, 2020, 102(1): 53-67.
|
[38] |
HE S L, JIANG J Z, CHEN B H, et al. Overexpression of a constitutively active truncated form of OsCDPK1 confers disease resistance by affecting OsPR10a expression in rice[J]. Scientific Reports, 2018, 8: 403.
|