中国稻米 ›› 2025, Vol. 31 ›› Issue (1): 61-67.DOI: 10.3969/j.issn.1006-8082.2025.01.008
段俊枝(), 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞*(
)
收稿日期:
2024-03-21
出版日期:
2025-01-20
发布日期:
2025-01-13
通讯作者:
*kjcankao@126.com作者简介:
第一作者:junzhi2004@163.com
基金资助:
DUAN Junzhi(), YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei*(
)
Received:
2024-03-21
Published:
2025-01-20
Online:
2025-01-13
About author:
1st author: junzhi2004@163.com
摘要:
水稻在其生长过程中经常面临各种非生物胁迫(包括干旱、高盐度、低温及高温等)和生物胁迫(如病虫害),严重影响其正常生长发育。WRKY转录因子家族作为植物界中最为庞大的转录因子家族之一,在调控植物生长发育及应对非生物胁迫和生物胁迫方面发挥着关键作用。本文综述了WRKY转录因子的结构特点及其在水稻抗非生物胁迫(干旱、高盐、低温、高温等)、生物胁迫(稻瘟病、白叶枯病、纹枯病、稻飞虱等)基因工程中的应用进展,旨在为WRKY转录因子在水稻及其他作物抗逆性遗传改良中的应用提供理论基础和实践指导。
中图分类号:
段俊枝, 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞. WRKY转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2025, 31(1): 61-67.
DUAN Junzhi, YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei. Progress on Application of WRKY Transcription Factor in Rice Stress Tolerance Genetic Engineering[J]. China Rice, 2025, 31(1): 61-67.
[1] | SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227. |
[2] | MANNA M, THAKUR T, CHIROM O, et al. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants[J]. Physiologia Plantarum, 2021, 172(2): 847-868. |
[3] | ERPEN L, DEVI H S, GROSSER J W, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell, Tissue and Organ Culture, 2018, 132(1): 1-25. |
[4] | JU Y L, YUE X F, MIN Z, et al. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 146: 98-111. |
[5] | REN C K, LI Z H, SONG P H, et al. Overexpression of a grape MYB transcription factor gene VhMYB2 increases salinity and drought tolerance in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2023, 24(13): 10 743. |
[6] | ZHANG L, XIANG Z P, LI J F, et al. bHLH57 confers chilling tolerance and grain yield improvement in rice[J]. Plant, Cell & Environment, 2023, 46(4): 1 402-1 418. |
[7] | KHAN F S, GOHER F, PAULSMEYER M N, et al. Calcium (Ca2+) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants[J]. Plant Biology, 2023, 25(7): 1 025-1 034. |
[8] | KIDOKORO S, WATANABE K, OHORI T, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. The Plant Journal, 2015, 81(3): 505-518. |
[9] | ZHANG Y, ZHOU Y Y, ZHANG D, et al. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar[J]. Environmental and Experimental Botany, 2020, 176: 104 117. |
[10] | JI Y, MOU M, ZHANG H, et al. GhWRKY33 negatively regulates jasmonate-mediated plant defense to Verticillium dahliae[J]. Plant Diversity, 2022, 45(3): 337-346. |
[11] | YU S J, YANG L Y, GAO K X, et al. Dioscorea composita WRKY5 positively regulates AtSOD1 and AtABF2 to enhance drought and salt tolerances[J]. Plant Cell Reports, 2023, 42(8): 1 365-1 378. |
[12] | WANG Y G, DONG B, WANG N N, et al. A WRKY transcription factor PmWRKY57 from Prunus mume improves cold tolerance in Arabidopsis thaliana[J]. Molecular Biotechnology, 2023, 65(8): 1 359-1 368. |
[13] | XING C H, CHEN Q M, QIAO Q H, et al. PbrWRKY70 increases pear (Pyrus bretschneideri Rehd) black spot disease tolerance by negatively regulating ethylene synthesis via PbrERF1B-2[J]. Plant Science, 2023, 334: 111 773. |
[14] | LKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5): 491-498. |
[15] | CHEN C H, CHEN Z X. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Molecular Biology, 2000, 42(2): 387-396. |
[16] | ZHANG Y J, WANG L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1): 1. |
[17] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[18] | ABDULLAH-ZAWAWI M R, AHMAD-NIZAMMUDDIN N F, GOVENDER N, et al. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice[J]. Scientific Reports, 2021, 11(1): 19 678. |
[19] | WU X L, SHIROTO Y, KISHITANI S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1): 21-30. |
[20] | LEE H, CHA J, CHOI C, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 2018, 11(1): 5. |
[21] | SHEN H S, LIU C T, ZHANG Y, et al. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Molecular Biology, 2012, 80(3): 241-253. |
[22] | RAINERI J, WANG S H, PELEG Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4): 401-413. |
[23] | YANG Z, CHI X Y, GUO F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum[J]. Journal of Plant Physiology, 2020, 246/247: 153 142. |
[24] | WU M, ZHANG K M, XU Y Z, et al. The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2022, 170: 180-191. |
[25] | HUANG K, WU T, MA Z M, et al. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth[J]. International Journal of Molecular Sciences, 2021, 22(9): 4 337. |
[26] | SONG G, SON S, LEE K S, et al. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice[J]. Plants, 2022, 11(15): 1 938. |
[27] | LIM C, KANG K, SHIM Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022, 188(4): 1 900-1 916. |
[28] | ZHOU S, ZHENG W J, LIU B H, et al. Characterizing the role of TaWRKY13 in salt tolerance[J]. International Journal of Molecular Sciences, 2019, 20(22): 5 712. |
[29] | HUANG S Z, HU L J, ZHANG S H, et al. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance[J]. International Journal of Molecular Sciences, 2021, 22(16): 8 625. |
[30] | ZHANG M X, ZHAO R R, WANG H T, et al. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice[J]. Plant Cell Reports, 2023, 42(2): 223-234. |
[31] | HUANG J J, LIU F H, CHAO D, et al. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(19): 11 999. |
[32] | BO C, CHEN H W, LUO G W, et al. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice[J]. Plant Cell Reports, 2020, 39(1): 135-148. |
[33] | HUANG Y M, CHEN F Q, CHAI M N, et al. Ectopic overexpression of pineapple transcription factor AcWRKY31 reduces drought and salt tolerance in rice and Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(11): 6 269. |
[34] | YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16): 5 085-5 097. |
[35] | ZHANG M X, ZHAO R R, HUANG K, et al. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice[J]. The Plant Journal, 2022, 112(2): 383-398. |
[36] | CHEN S Q, CAO H R, HUANG B L, et al. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J]. Plant, Cell & Environment, 2022, 45(7): 2 126-2 144. |
[37] | DAI X Y, WANG Y Y, ZHANG W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. Journal of Experimental Botany, 2016, 67(3): 947-960. |
[38] | LI G Z, WANG Z Q, YOKOSHO K, et al. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa)[J]. The New Phytologist, 2018, 219(1): 149-162. |
[39] | SHIMONO M, SUGANO S, NAKAYAMA A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 2007, 19(6): 2 064-2 076. |
[40] | ZHANG J, PENG Y L, GUO Z J. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Research, 2008, 18(4): 508-521. |
[41] | ABBRUSCATO P, NEPUSZ T, MIZZI L, et al. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast[J]. Molecular Plant Pathology, 2012, 13(8): 828-841. |
[42] | VO K T X, KIM C Y, HOANG T V, et al. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice[J]. Frontiers in Plant Science, 2018, 8: 2 220. |
[43] | LIU Q, LI X, YAN S J, et al. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J]. BMC Plant Biology, 2018, 18(1): 257. |
[44] | WEI T, OU B, LI J B, et al. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance[J]. PLoS One, 2013, 8(3): e59720. |
[45] | CHOI N, IM J H, LEE E, et al. WRKY10 transcriptional regulatory cascades in rice are involved in basal defense and Xa1-mediated resistance[J]. Journal of Experimental Botany, 2020, 71(12): 3 735-3 748. |
[46] | CHUJO T, MIYAMOTO K, SHIMOGAWA T, et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus[J]. Plant Molecular Biology, 2013, 82(1): 23-37. |
[47] | LIU X Q, BAI X Q, WANG X J, et al. OsWRKY71, a rice transcription factor, is involved in rice defense response[J]. Journal of Plant Physiology, 2007, 164(8): 969-979. |
[48] | QIU D Y, XIAO J, DING X H, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-499. |
[49] | 邱德运. 水稻WRKY转录因子OsWRKY13的功能鉴定和调控机理研究[D]. 武汉: 华中农业大学, 2007. |
[50] | 朱峥, 王田幸子, 陈悦, 等. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5):1 129-1 140. |
[51] | XIE W Y, KE Y G, CAO J B, et al. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance[J]. Plant Physiology, 2021, 187(3): 1 746-1 761. |
[52] | PENG X X, HU Y J, TANG X K, et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1 485-1 498. |
[53] | WANG H H, MENG J, PENG X X, et al. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight[J]. Plant Molecular Biology, 2015, 89(1): 157-171. |
[54] | PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1): 63. |
[55] | HU L F, YE M, LI R, et al. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice[J]. Plant Signaling & Behavior, 2016, 11(4): e1169357. |
[56] | HUANGFU J Y, LI J C, LI R, et al. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 2016, 17(6): 697. |
[57] | 皇甫佳一. 转录因子OsWRKY45在调控水稻对于褐飞虱抗性中的作用与初步机理[D]. 杭州: 浙江大学, 2015. |
[58] | 昌鑫. OsWRKY70基因在水稻抗白叶枯病和褐飞虱中的初步功能解析[D]. 福州: 福建农林大学, 2022. |
[59] | WANG H H, HAO J J, CHEN X J, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Molecular Biology, 2007, 65(6): 799-815. |
[1] | 代帅军, 张运波, 黄礼英. 粮食作物早发的研究进展[J]. 中国稻米, 2025, 31(1): 1-10. |
[2] | 温雅, 顾嘉怡, 王超瑞, 张瑛, 肖治林, 张耗. 水稻高产减排的氮肥管理技术及其对稻田温室气体排放影响的研究进展[J]. 中国稻米, 2025, 31(1): 11-17. |
[3] | 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 干旱胁迫下水杨酸对不同耐旱性水稻品种生长和生理特性的影响[J]. 中国稻米, 2025, 31(1): 27-34. |
[4] | 李虎, 吴子帅, 刘广林, 陈传华, 罗群昌, 朱其南. 80份香稻材料BADH2香味基因变异类型分析及稻瘟病抗性基因检测[J]. 中国稻米, 2025, 31(1): 35-43. |
[5] | 毛晓红, 李懿芸, 傅琳琳. 浙江粮食生产特征与产能提升对策研究[J]. 中国稻米, 2025, 31(1): 44-53. |
[6] | 余艳锋, 袁婷婷, 余永琦, 孙明珠. 江西粮食产业现状及高质量发展对策[J]. 中国稻米, 2025, 31(1): 54-60. |
[7] | 王英, 马建森, 王芳, 刘汝亮, 洪瑜, 冒辛平. 引黄灌区水稻氮高效品种筛选评价[J]. 中国稻米, 2025, 31(1): 74-78. |
[8] | 谌江华, 肖山, 郑炜, 柴伟纲, 姚红燕. 水稻二化螟性诱智能监测效果研究[J]. 中国稻米, 2025, 31(1): 89-93. |
[9] | 吴华宇, 吴红淼, 李忠, 吴文革. 水稻机插侧深施肥技术的发展及技术要点[J]. 中国稻米, 2025, 31(1): 94-99. |
[10] | 康洪灿, 李国生, 王锦艳, 张义, 段浩平, 尹正钦, 何荣满, 钏兴宽. 播种期对水稻两用核不育系育性转化和自交结实率的影响[J]. 中国稻米, 2025, 31(1): 100-105. |
[11] | 张少波, 张金成. 寒地水稻侧深变量施肥技术探讨[J]. 中国稻米, 2025, 31(1): 106-108. |
[12] | 王彩艳, 郑良燕, 于兰, 徐旻鹰, 顾兴国. 浙江稻作农业文化遗产时空特征、多重价值及保护发展研究[J]. 中国稻米, 2025, 31(1): 112-119. |
[13] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[14] | 黄宣, 邱海萍, 严成其, 姜洁锋, 施贤波, 叶朝辉. 聚合抗稻瘟病基因Pigm和抗白叶枯病基因Xa23改良粳稻宁84抗性[J]. 中国稻米, 2024, 30(6): 105-109. |
[15] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||