[1] |
AL-GHUSSAIN L. Global warming: Review on driving forces and mitigation[J]. Environmental Progress & Sustainable Energy, 2018, 38:13-21.
|
[2] |
GORH D, BARUAH K K. Estimation of methane and nitrous oxide emission from wetland rice paddies with reference to global warming potential[J]. Environmetal Science and Pollution Research International, 2019, 26:16 331-16 344.
|
[3] |
TIAN Z, NIU Y, FAN D, et al. Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in China: Evaluating tradeoffs by using coupled agricultural systems models[J]. Agricultural Systems, 2018, 159:175-186.
|
[4] |
BRACKEN C J, LANIGAN G J, RICHARDS K G, et al. Sward composition and soil moisture conditions affect nitrous oxide emissions and soil nitrogen dynamics following urea-nitrogen application[J]. Science of the Total Environment, 2020, 722:137 780.
|
[5] |
HU Y M, WANG L, CHEN F X, et al. Soil carbon sequestration efficiency under continuous paddy rice cultivation and excessive nitrogen fertilization in South China[J]. Soil and Tillage Research, 2021, 213:105 108.
|
[6] |
WANG C, LIU J, SHEN J, et al. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment[J]. Agriculture, Ecosystems & Environment, 2018, 262:83-96.
|
[7] |
MADELINE G, NICHOLAS M, BAGGS E M, et al. Soil nitrate reducing processes-drivers, mechanisms for spatial variation, and significance for nitrous oxide production[J]. Frontiers in Microbiology, 2012, 3:407.
|
[8] |
石洪艾, 尤孟阳, 李禄军, 等. 长期施用有机物料下黑土氮素有效性及其与作物产量的关系[J]. 生态学杂志, 2012, 31:2 283-2 288.
|
[9] |
ROBERTSON G P, GROFFMAN P M. Nitrogen transformations[A]// Ecology and Biochemistry(Fourth Edition)[M]. Burlington, Massachusetts, USA: Acadimic Press, 2015.
|
[10] |
宫亮, 金丹丹, 牛世伟, 等. 长期定位氮肥减施对水稻产量和氮素吸收利用的影响[J]. 中国稻米, 2022, 28(3):42-46.
|
[11] |
HUANG M, JIANG P, SHAN S, et al. Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions[J]. Rice (NY), 2017, 10:43.
|
[12] |
吴茜虞, 续勇波, 雷宝坤, 等. 粪肥替代对稻田土壤氮素、有机质含量及水稻产量的影响[J]. 西南农业学报, 2023, 36(10):2 217-2 223.
|
[13] |
严奉君, 孙永健, 马均, 等. 不同土壤肥力条件下麦秆还田与氮肥运筹对杂交稻氮素利用、产量及米质的影响[J]. 中国水稻科学, 2015, 29(1):56-64.
|
[14] |
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1):175-181.
|
[15] |
田小明, 李俊华, 王成, 等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响[J]. 土壤, 2014, 46(3):481-488.
|
[16] |
高琳, 潘志华, 杨书运, 等. 碳源和巨大芽孢杆菌添加对土壤微生物环境及N2O、CH4排放的影响[J]. 中国农业气象, 2016, 37(6):645-653.
|
[17] |
LI J L, LI Y E, WAN Y F, et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315:1-10.
|
[18] |
WANG J Y, CHEN Z Z, MA Y C, et al. Methane and nitrous oxide emissions as affected by organic-inorganic mixed fertilizer from a rice paddy in southeast China[J]. Journal of Soils and Sediments, 2013, 13:1 408-1 417.
|
[19] |
HOU W F, XUE X X, LI X K, et al. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China[J]. Field Crops Research, 2019, 236:14-23.
|
[20] |
付文涛. 土壤肥力和施氮量对双季稻稻米品质和稻田氮素损失的影响[J]. 南昌:江西农业大学, 2023.
|
[21] |
廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响[J]. 核农学报, 2018, 32(9):1 821-1 830.
|
[22] |
王森, 廖文华, 郭巨秋, 等. 石灰氮对土壤NH3、N2O排放的影响[J]. 环境化学, 2019, 38(12):2 728-2 735.
|
[23] |
JIANG Y, LIAO P, VAN GESTEL N, et al. Lime application lowers the global warming potential of a double rice cropping system[J]. Geoderma, 2018, 325:1-8.
|
[24] |
JU C X, BURESH R J, WANG Z Q, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research, 2015, 175:47-55.
|
[25] |
唐刚. 土壤肥力和施氮量对双季稻产量和氮肥利用效率的影响[J]. 南昌:江西农业大学, 2021.
|
[26] |
李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5):1 310-1 318.
|
[27] |
贾震, 付文涛, 王海媛, 等. 红壤稻田不同肥力水平和施氮量对早晚季甲烷排放的互作效应[J]. 中国稻米, 2023, 29(6):61-66.
|
[28] |
刘时光, 王晓玲, 王元涛, 等. 稻田土壤氧化亚氮产生潜势、反硝化功能基因丰度和群落结构的垂向分布[J]. 环境科学学报, 2020, 40(3):1 040-1 050.
|
[29] |
孙英杰, 吴昊, 王亚楠. 硝化反硝化过程中N2O释放影响因素[J]. 生态环境学报, 2011, 20(2):384-388.
|
[30] |
SAHA D, KAYE J P, BHOWMIK A, et al. Organic fertility inputs synergistically increase denitrification-derived nitrous oxide emissions in agroecosystems[J]. Ecological Applications, 2021, 31:e02403.
|
[31] |
秦碧蓉, 尤赛雅, 陈书融, 等. 不同施氮水平对双季稻产量、氮素利用率及稻田氮素平衡的影响[J]. 作物杂志, 2024(2):89-96.
|
[32] |
刘少文, 殷敏, 褚光, 等. 土壤氮激发效应及其微生物机理研究进展[J]. 中国水稻科学, 2019, 33(4):303-312.
|
[33] |
KIM G W, KIM P J, KHAN M I, et al. Effect of rice planting on nitrous oxide (N2O) emission under different levels of nitrogen fertilization[J]. Agronomy, 2021, 11(2):217.
|
[34] |
李熠凡, 李烙布, 李伏生. 不同灌溉施氮模式对稻田甲烷和氧化亚氮排放的影响[J]. 灌溉排水学报, 2021, 40(12):44-53.
|
[35] |
LIANG K M, ZHONG X H, HUANG N R, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J]. Science of the Total Environment, 2017, 609:46-57.
|
[36] |
张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析[J]. 农业工程学报, 2015, 31(22):1-6.
|
[37] |
段永康, 杨海燕, 吴文龙, 等. 植物氮素吸收、转运和同化的分子机制[J]. 福建农业学报, 2022, 37(4):547-554.
|
[38] |
WU Y, LIN S, LIU T, et al. Effect of crop residue returns on N2O emissions from red soil in China[J]. Soil Use and Management, 2015, 32:80-88.
|
[39] |
廖萍, 刘磊, 何宇轩, 等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(1):84-92.
|