China Rice ›› 2023, Vol. 29 ›› Issue (4): 38-44.DOI: 10.3969/j.issn.1006-8082.2023.04.007
• Special Thesis & Basic Research • Previous Articles Next Articles
LI Yixiang1,2(), ZHOU Xinqiao2, CHEN Dagang2, GUO Jie2, CHEN Ke2, ZHANG Ronjun1, RAO Ganshun1, LIU Chuanguang2,*(
), CHEN Youding2
Received:
2023-03-07
Online:
2023-07-20
Published:
2023-07-26
Contact:
*guyliu@tom.com
About author:
First author contact:
李逸翔1,2(), 周新桥2, 陈达刚2, 郭洁2, 陈可2, 张容郡1, 饶刚顺1, 刘传光2,*(
), 陈友订2
通讯作者:
*guyliu@tom.com
作者简介:
第一联系人:基金资助:
CLC Number:
LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food[J]. China Rice, 2023, 29(4): 38-44.
李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2023.04.007
[1] | JENSEN B L. Somatic development in cleidocranial dysplasia[J]. American Journal of Medical Genetics Part C-Seminars in Medical Genetics, 1990, 35(1): 69-74. |
[2] | MAZZUCOTELLI E, TARTARI A, CATTIVELLI L, et al. Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat[J]. Journal of Experimental Botany, 2006, 57(14): 3 755-3 766. |
[3] | XU B, LONG Y, FENG X, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience[J]. Nature Communications, 2021, doi: 10.1038/s41467-021-21694-3. |
[4] | NAYYAR H, KAUR R, KAUR S, et al. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J]. Journal of Plant Growth Regulation, 2014, 33(2): 408-419. |
[5] | MA X, ZHU C, NA Y, et al. γ-aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings[J]. Physiologia Plantarum, 2016, 158(4): 389-401. |
[6] | 高秋丽, 蒋羽鸽, 罗婷玉, 等. γ-氨基丁酸强化米缓解2型糖尿病模型小鼠胰腺损伤[J]. 卫生研究, 2019, 48(2): 179-199. |
[7] | CELLOT G, CHERUBINI E. Functional role of ambient GABA in refining neuronal circuits early in postnatal development[J]. Frontiers in Neural Circuits, 2013, doi: 10.3389/fncir.2013.00136. |
[8] | AOKI H, FURUYA Y J, ENDO Y, et al. Effect of γ-Aminobutyric acid-enriched tempeh-like fermented soybean (GABA-Tempeh) on the blood pressure of spontaneously hypertensive rats[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(8): 1 806-1 808. |
[9] | FAIT A, FROMM H, WALTER D. Highway or byway: The metabolic role of GABA shunt in plants[J]. Trends in Plant Science, 2007, 13: 1 380-1385. |
[10] | 杨树明, 罗曦, 曾亚文, 等. 不同水稻品种产量及其γ-氨基丁酸和抗性淀粉含量差异与相关性[J]. 西南农业学报, 2009, 22(2):236-240. |
[11] | 柏鹤, 马小定, 曹桂兰, 等. 不同类型特种稻种质营养及功能性成分含量的差异[J]. 植物遗传资源学报, 2017, 18(6):1013-1 022. |
[12] | KARLADEE D, SURIYONG S. γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination[J]. Science Asia, 2012, 38(1): 13-17. |
[13] | 吾建祥, 施南芳, 楼宇涛. 萌芽米中富含γ-氨基丁酸的水稻品种筛选[J]. 浙江农业科学, 2014(6):820-822. |
[14] | 潘阳阳, 陈宜波, 王重荣, 等. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2):121-129. |
[15] | PALANIVELU R, BRASS L, EDLUND A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114(1): 47-59. |
[16] |
SHELP B J, BOWN A W, MCLEAN M D. Metabolism and functions of gamma-aminobutyric acid[J]. Trends in Plant Science, 1999, 4(11): 446-452.
PMID |
[17] | BHATNAGAR P, MINOCHA R, MINOCHA S C. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism[J]. Plant Physiology, 2002, 128(4): 1 455-1 469. |
[18] | SHELP B J, BOZZO G G, TROBACHER C P, et al. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I.Pathway structure[J]. Botany-botanique, 2012, 90(8): 651-668. |
[19] | ALCAZAR R, ALTABELLA T, MARCO F, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231(6): 1 237-1 249. |
[20] | 张紫晋, 任益明, 江迪, 等. 不同大麦籽粒γ-氨基丁酸含量的差异及环境影响[J]. 西南农业学报, 2022, 35(5):1089-1 094. |
[21] |
DEFEUDIS F V. Gamma-aminobutyric acid and cardiovascular function[J]. Experientia, 1983, 39(8): 845-849.
PMID |
[22] | NISHIMURA M, YOSHIDA S I, HARAMOTO M, et al. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure[J]. Journal of Traditional and Complementary Medicine, 2014, 6(1): 66-71. |
[23] | MA P J, LI T, JI F C, et al. Effect of GABA on blood pressure and blood dynamics of anesthetic rats[J]. International Journal of Clinical & Experimental Medicine, 2015, 8(8): 14 296-14 302. |
[24] | SMISMANS A, SCHUIT F, PIPELEERS D. Nutrient regulation of gamma-aminobutyric acid release from islet beta cells[J]. Diabetologia, 1997, 40(12): 1 411-1 415. |
[25] | SOHRABIPOUR S, SHARIFI M R, TALEBI A, et al. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet[J]. European Journal of Pharmacology, 2018, 826(10): 75-84. |
[26] | 刘宇凡, 王泽敏, 王晴鹤, 等. γ-氨基丁酸拮抗2型糖尿病的作用及机制探讨[J]. 营养学报, 2021, 43(3): 265-273. |
[27] |
BATTAGLIOLI G, LIU H, MARTIN D L. Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis[J]. Journal of Neurochemistry, 2003, 86(4): 879-887.
PMID |
[28] | 曹晶晶. 发芽糙米及制品加工过程中γ-氨基丁酸变化研究[D]. 北京: 中国农业科学院, 2018. |
[29] | OHTSUBO K, SUZUKI K, YASUI Y, et al. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder[J]. Journal of Food Composition and Analysis, 2005, 18(4): 303-316. |
[30] | LIU L, ZHAI H, WAN J. Accumulation of γ-aminobutyric acid in giant-embryo rice grain in relation to glutama tedecarboxy lase activity and its gene expression during water soaking[J]. Cereal Chemistry, 2005, 82 (2): 191-197. |
[31] | KOMATSUZAKI N, TSUKAHARA K, TOYOSHIMA H, et al. Effect of soaking and gaseous treatment on GABA content in germinated brown rice[J]. Journal of Food Engineering, 2007, 78(2): 556-560. |
[32] | SAIKUSA T, HORINO T, MORI Y. Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(12): 2 291-2 292. |
[33] | JANNOEY P, NIAMSUP H, LUMYONG S, et al. γ-aminobutyric acid (GABA) accumulations in rice during germination[J]. Chiang Mai Journal of Science, 2009, 37(1): 124-133. |
[34] | KHAOSA-ARD T, SONGSERMPONG S. Influence of germination time on the GABA content and physical properties of germinated brown rice[J]. Asian Journal of Food and Agro-Industry, 2012, 5(4): 270-283. |
[35] | THITINUNSOMBOON S, KEERATIPIBUL S, BOONSIRIWIT A. Enhancing gamma-aminobutyric acid content in germinated brown rice by repeated treatment of soaking and incubation[J]. Food Science & Technology International, 2013, 19(1): 25-33. |
[36] | 康文瀚, 田洪磊, 程卫东, 等. 糙米发芽富集γ-氨基丁酸工艺优化的研究[J]. 食品工业, 2016, 37(5):78-82. |
[37] | 刘颖, 王秋, TATYANA K K, 等. 富含γ-氨基丁酸的发芽糙米制备工艺的研究[J]. 食品工业, 2015, 36(4):82-86. |
[38] | 袁建, 李倩, 朱贞映, 等. 高γ-氨基丁酸发芽糙米工艺条件的优化研究[J]. 粮食与饲料工业, 2014, 12(12):32-36. |
[39] | 丁俊胄. 低氧胁迫与超声场激发对发芽糙米中γ-氨基丁酸积累的影响及其代谢机制[D]. 武汉: 华中农业大学, 2016. |
[40] | DING J Z, YANG T W, FENG H, et al. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions[J]. Joural of Agricultural & Food Chemistry, 2016, 64(5): 1 094-1 102. |
[41] | SHIGEMATSU T, MURAKAMI M. Bioconversion of glutamic acid to γ-aminobutyric acid (GABA) in brown rice grains induced by high pressure treatment[J]. Japan Journal of Food Engineering, 2010, 11(4): 189-199. |
[42] | 陈春旭, 王利勤, 郭元新, 等. 盐胁迫对发芽糙米富集γ-氨基丁酸及蛋白组分变化的影响[J]. 食品科学, 2018, 39(5):87-92. |
[43] | 马丽, 唐坚, 王梦晗, 等. 低温胁迫对糙米发芽及γ-氨基丁酸含量的影响[J]. 食品工业科技, 2015, 36(4):278-281. |
[44] | 魏振承, 张名位, 池建伟, 等. 引进巨胚稻与普通稻的米质和营养成分分析比较[J]. 植物遗传资源学报, 2005, 6(4):386-389. |
[45] | 杨艳荔. 优质巨胚稻营养成分分析及发芽试验[D]. 福州: 福建农林大学, 2008. |
[46] | SATOH H, OMUAR T. New endosperm mutations induced by chemical mutagens in rice Oryza sativa L[J]. Japanese Journal of Breeding, 2008, 31(3): 316-326. |
[47] | MAEDA H, NEMOTO H, IIDA S, et al. A new rice variety with giant embryos, “Haiminori”[J]. Breeding Science, 2001, 51(3): 211-213. |
[48] | 庞乾林. 巨大胚等新性状稻米的遗传育种研究取得进展──“巨胚1号”水稻新品系育成[J]. 中国稻米, 1997(1):15. |
[49] | 章清杞, 杨艳荔, 李毓, 等. 籼稻巨胚不育系龙特浦geA的选育[J]. 核农学报, 2003, 17(4):245-248. |
[50] | 朴钟泽, 张建明, 陆家安, 等. 功能性水稻新品种巨胚粳1号选育及应用[J]. 中国稻米, 2009, 15(3):34-35. |
[51] | 任永刚, 张建中, 张红梅, 等. 通过成熟胚离体培养获得巨胚水稻新品种及性状和稻米品质分析[J]. 上海师范大学学报(自然科学版), 2011, 40(3):289-294. |
[52] | 蔡治君, 黄菊, 王英存, 等. 分子标记辅助育种选育黑色香型巨胚水稻[J]. 分子植物育种, 2014, 12(6):1112-1 118. |
[53] | 王萌, 李建粤. 分子标记辅助选育红米巨胚水稻[J]. 上海师范大学学报(自然科学版), 2017, 46(5):647-653. |
[54] | 章清杞, 李美德, 黄荣华. 巨胚糯稻恢复系福巨糯2号的选育[J]. 杂交水稻, 2020, 35(5):27-30. |
[55] | AKAMA K, TAKAIWA F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]. Journal of Experimental Botany, 2007, 58(10): 2 699-2 707. |
[56] | AKAMA K, KANETOU J, SHIMOSAKI S, et al. Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats[J]. Transgenic Research, 2009, 18(6): 865-876. |
[57] | AKAMA K, AKTER N, ENDO H, et al. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains[J]. Rice, 2020, 13(1): 1-12. |
[58] | 周露, 沈贝贝, 白苏阳, 等. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(9):1305-1 312. |
[59] | 章秀福, 王丹英, 方福平, 等. 中国粮食安全和水稻生产[J]. 农业现代化研究, 2005, 26(2):85-88. |
[60] | GONG J, HUANG J, XIAO G, et al. Determination of γ‐aminobutyric acid in Chinese rice wines and its evolution during fermentation[J]. Journal of the Institute of Brewing, 2017, 3(9): 417-422. |
[61] | 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220. |
[62] | WANG Z W, CHEN Z, ZHANG L F, et al. China hypertension survey investigators. Status of hypertension in China: Results from the China hypertension survey, 2012—2015[J]. Circulation, 2018, 137(22): 2 344-2 356. |
[63] | KOHAMA Y, MATSUMOTO S, MIMURA T, et al. Isolation and identification of hypotensive principles in red-mold rice[J]. Chemical & Pharmaceutical Bulletin, 1987, 35(6): 2 484-2 489. |
[64] | TSUJI K, ICHIKAWA T, TANABE N, et al. Antihypertensive activities of beni-koji extracts and γ-aminobutyric acid in spontaneously hypertensive rats[J]. The Japanese Journal of Nutrition and Dietetics, 2010, 50(5): 285-291. |
[65] | KAWAKAMI K, YAMADA K, YAMADA T, et al. Antihypertensive effect of γ-aminobutyric acid-enriched brown rice on spontaneously hypertensive rats[J]. Journal of Nutritional Science & Vitaminology, 2018, 64(1): 56-62. |
[66] | SINGH N, SINGH H, KAUR K, et al. Relationship between the degree of milling, ash distribution pattern and conductivity in brown rice[J]. Food Chemistry, 2000, 69(2): 147-151. |
[67] | MARERO L M, PAYUMO E M, LIBRANDO E C, et al. Technology of weaning food formulations prepared from germinated cereals and legumes[J]. Journal of Food Science, 1988, 53(5): 1 391-1 395. |
[68] | 华艳. 糙米发芽工艺优化及应用研究[D]. 泰安: 山东农业大学, 2021. |
[69] | 苏登. 发芽糙米富含 GABA 的杂交稻良种及速食粥工艺研究[D]. 福州: 福建农林大学, 2015. |
[70] | 尹永祺, 王金凤, 方维明, 等. 高γ-氨基丁酸营养干面条的研制[J]. 食品工业科技, 2018, 39(3):148-152. |
[71] |
CORNEJO F, CACERES P J, MARTINEZ-VILLALUENGA C, et al. Effects of germination on the nutritive value and bioactive compounds of brown rice breads[J]. Food Chemistry, 2015, 173: 298-304.
PMID |
[72] | 周艳华, 李涛, 刘颖. 富含γ-氨基丁酸保健啤酒的酿造工艺研究[J]. 食品工业, 2018, 39(5):83-87. |
[73] | 范明成, 谢智鑫, 刘容旭, 等. 超高压处理对发芽糙米酒中γ-氨基丁酸及挥发性成分的影响[J]. 食品工业科技, 2019, 40(20):29-35. |
[74] | 盖伦, 姜帆, 韩建春. 以发芽糙米为主要原料生产富含γ-氨基丁酸白酒[J]. 酿酒, 2013, 40(6):102-105. |
[75] | CACERES P J, PENAS E, MARTINEZ-VILLALUENGA C, et al. Development of a multifunctional yogurt-like product from germinated brown rice[J]. Lwt-food Science and Technology, 2019, 99: 306-312. |
[76] | 傅金凤, 黄美娜, 朱培渤, 等. 响应面法优化发芽糙米酒茶复合饮料制备工艺[J]. 食品工业科技, 2022, 43(15):193-201. |
[77] | 李飞, 代娇阳, 牛宇含, 等. 发芽糙米活性乳酸菌饮料的研制[J]. 粮食与油脂, 2021, 34(11):121-124. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[7] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[8] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[9] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[10] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[11] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[12] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[13] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[14] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
[15] | WU Tao, DENG Hongzhong, ZHAO Yingxi, YANG Chen, GUO Yu, ZHAO Youquan, XIE Zhimei, ZHANG Liyang, YANG Yuanzhu. Analysis of Varieties Approved in Longping High-tech Rice Green Channel in 2016—2021 [J]. China Rice, 2023, 29(4): 90-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||