
China Rice ›› 2025, Vol. 31 ›› Issue (6): 33-45.DOI: 10.3969/j.issn.1006-8082.2025.06.007
• Special Thesis & Basic Research • Previous Articles Next Articles
WEN Xuan1,2(
), LIU Tengfei1, HU Wenbin1, ZHOU Zheng1, LIU Ye1, HE Jiwai2, ZHANG Haiqing2,*(
), ZHAO Zhenghong1,*(
)
Received:2025-05-01
Online:2025-11-20
Published:2025-11-07
Contact:
ZHANG Haiqing, ZHAO Zhenghong
About author:First author contact:1st author: 1184820058@qq.com
文萱1,2(
), 刘腾飞1, 胡文彬1, 周政1, 刘烨1, 贺记外2, 张海清2,*(
), 赵正洪1,*(
)
通讯作者:
张海清,赵正洪
作者简介:第一联系人:第一作者:1184820058@qq.com
基金资助:CLC Number:
WEN Xuan, LIU Tengfei, HU Wenbin, ZHOU Zheng, LIU Ye, HE Jiwai, ZHANG Haiqing, ZHAO Zhenghong. Progress on the Mechanism of Metal Element Transport and Related Transport Proteins in Rice[J]. China Rice, 2025, 31(6): 33-45.
文萱, 刘腾飞, 胡文彬, 周政, 刘烨, 贺记外, 张海清, 赵正洪. 水稻中金属元素转运机理与相关转运蛋白研究进展[J]. 中国稻米, 2025, 31(6): 33-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.06.007
| [1] | KAUR R, DAS S, BANSAL S, et al. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms[J]. Physiologia Plantarum, 2021, 173(1): 430-448. |
| [2] | WONG C K E, COBBETT C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1): 71-78. |
| [3] | TANG L, MAO B, LI Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7: 14 438. |
| [4] | CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67(1): 489-512. |
| [5] | JOZEFCZAK M, KEUNEN E, SCHAT H, et al. Differential response of Arabidopsis leaves and roots to cadmium: Glutathione-related chelating capacity vs antioxidant capacity[J]. Plant Physiology and Biochemistry, 2014, 83: 1-9. |
| [6] | HUYBRECHTS M, HENDRIX S, KYNDT T, et al. Short-term effects of cadmium on leaf growth and nutrient transport in rice plants[J]. Plant Science, 2021, 313: 111 054. |
| [7] | AIQING Z, ZHANG L, NING P, et al. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(28): 7 917-7 928. |
| [8] | KANDIL E E, EL-BANNA A A A, TABL D M M, et al. Zinc nutrition responses to agronomic and yield traits, kernel quality, and pollen viability in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2022, 13: 791 066. |
| [9] | WANG S J, FANG R T, YUAN X J, et al. Foliar spraying of ZnO nanoparticles enhanced the yield, quality, and zinc enrichment of rice grains[J]. Foods, 2023, 12(19): 3 677. |
| [10] | WAHANE M R, BEDSE T J, JONDHALE D G, et al. Significance of zinc fortified briquettes on soil properties, zinc concentration, uptake and economics of rice[J]. Communications in Soil Science and Plant Analysis, 2023, 54(6): 855-863. |
| [11] | GAO S, ZHOU M, ZHOU Q Y, et al. Effects of exogenous zinc (ZnSO4·7H2O) on photosynthetic characteristics and grain quality of hybrid rice[J]. Plant Physiology and Biochemistry, 2023, 205: 108 049. |
| [12] | PONTE L R, FARIAS J G, DEL FRARI BK, et al. OsYSL13 transporter may play a role in Mn homeostasis in rice (Oryza sativa L.)[J]. Theoretical and Experimental Plant Physiology, 2023, 35(3): 263-274. |
| [13] | BRIAT J F, DUBOS C, GAYMARD F. Iron nutrition, biomass production, and plant product quality[J]. Trends in Plant Science, 2015, 20(1): 33-40. |
| [14] | MARSCHNER H, ROMHELD V, KISSEL M. Different strategies in higher plants in mobilization and uptake of iron[J]. Journal of Plant Nutrition, 1986, 9(3): 695-713. |
| [15] | MORI S. Iron acquisition by plants[J]. Current Opinion in Plant Biology, 1999, 2(3): 250-253. |
| [16] | LI Q, CHEN L, YANG A. The molecular mechanisms underlying iron deficiency responses in rice[J]. International Journal of Molecular Sciences, 2020, 21(1): 43. |
| [17] | SANTI S, SCHMIDT W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots[J]. New Phytologist, 2009, 183(4): 1 072-1 084. |
| [18] | KAWAKAMI Y, BHULLAR N K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice[J]. Journal of Integrative Plant Biology, 2018, 60(12): 1 181-1 198. |
| [19] | RAJONANDRAINA T, RAKOTOSON T, WISSUWA M, et al. Mechanisms of genotypic differences in tolerance of iron toxicity in field-grown rice[J]. Field Crops Research, 2023, 298: 108 953. |
| [20] | XU E D, ZOU Y, YANG G, et al. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice[J]. Plant Science, 2024, 339: 111 935. |
| [21] | YU E, YAMAJI N, MAO C Z, et al. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice[J]. Journal of Experimental Botany, 2021, 72(20): 7 219-7 228. |
| [22] | TSUNEMITSU Y, YAMAJI N, MA J F, et al. Rice reduces Mn uptake in response to Mn stress[J]. Plant Signaling & Behavior, 2018, 13(1): e1422466. |
| [23] | MIR A R, PICHTEL J, HAYAT S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil[J]. BioMetals, 2021, 34(4): 737-759. |
| [24] | YUAN M, CHU Z, LI X H, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. The Plant Cell, 2010, 22(9): 3 164-3 176. |
| [25] | ZHANG C, LU W H, YANG Y, et al. OsYSL16 is required for preferential Cu distribution to floral organs in rice[J]. Plant and Cell Physiology, 2018, 59(10): 2 039-2 051. |
| [26] | TAN J J, HE S B, YAN S S, et al. Exogenous EDDS modifies copper-induced various toxic responses in rice[J]. Protoplasma, 2014, 251(5): 1 213-1 221. |
| [27] | BURKHEAD J L, REYNOLDS K A, ABDEL-GHANY S E, et al. Copper homeostasis[J]. New Phytologist, 2009, 182(4): 799-816. |
| [28] | ZHANG H X, SONG Y F, WANG F Y, et al. Identification of Cu-binding proteins in embryos of germinating rice in response to Cu toxicity[J]. Acta Physiologiae Plantarum, 2018, 40: 1-8. |
| [29] | LI J T, BAKER A J, YE Z H, et al. Phytoextraction of Cd-contaminated soils: Current status and future challenges[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(20): 2 113-2 152. |
| [30] | CHEN J G, ZOU W L, MENG L J, et al. Advances in the uptake and transport mechanisms and QTLs mapping of cadmium in rice[J]. International Journal of Molecular Sciences, 2019, 20(14): 3 417. |
| [31] | JING H N, YANG W T, CHEN Y L, et al. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety[J]. Science of The Total Environment, 2023, 897: 165 369. |
| [32] | HUANG L, LI W C, TAM N F Y, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.)[J]. Journal of Environmental Sciences, 2019, 75(1): 296-306. |
| [33] | URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20 959-20 964. |
| [34] | WANG C Q, THIELEMANN L, DIPPOLD M A, et al. Reductive dissolution of iron phosphate modifies rice root morphology in phosphorus-deficient paddy soils[J]. Soil Biology and Biochemistry, 2023, 177: 108 904. |
| [35] | ZHANG J L, ZHU Y C, YU L J, et al. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.)[J]. Cells, 2022, 11(3): 569. |
| [36] | TAN S, HAN R, LI P, et al. Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds[J]. Transgenic Research, 2015, 24(1): 109-122. |
| [37] | FENG K X, LI J X, YANG Y C, et al. Cadmium absorption in various genotypes of rice under cadmium stress[J]. International Journal of Molecular Sciences, 2023, 24(9): 8 019. |
| [38] | LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019, 19(1): 283. |
| [39] | BASHIR K, ISHIMARU Y, NISHIZAWA N K. Molecular mechanisms of zinc uptake and translocation in rice[J]. Plant and Soil, 2012, 361(1): 189-201. |
| [40] | SASAKI A, YAMAJI N, MITANI UENO N, et al. A node‐localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374-384. |
| [41] | LI M Z, HU D W, LIU X Q, et al. The OsZIP2 transporter is involved in root-to-shoot translocation and intervascular transfer of cadmium in rice[J]. Plant, Cell and Environment, 2024, 47(10): 3 865-3 881. |
| [42] | LEE S, KIM S A, LEE J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558. |
| [43] | RAMESH S A, SHIN R, EIDE D J, et al. Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiology, 2003, 133(1): 126-134. |
| [44] | LEE S, JEONG H J, KIM S A, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4): 507-517. |
| [45] | YANG M, LI Y, LIU Z, et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice[J]. The Plant Journal, 2020, 103(5): 1 695-1 709. |
| [46] | LI J J, LIU Y Y, KONG L H, et al. An intracellular transporter OsNRAMP7 is required for distribution and accumulation of iron into rice grains[J]. Plant Science, 2023, 336: 111 831. |
| [47] | SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2 155-2 167. |
| [48] | CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell and Environment, 2020, 43(10): 2 476-2 491. |
| [49] | HUNAG Q N, WU Y L, SHAO G S. Root aeration promotes cadmium accumulation in rice by regulating iron uptake-associated system[J]. Rice Science, 2021, 28(5): 511-520. |
| [50] | XIA J X, YAMAJI N, KASAI T, et al. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43): 18 381-18 385. |
| [51] | GAO H L, XIE W X, YANG C H, et al. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency[J]. The New Phytologist, 2018, 217(1): 179-193. |
| [52] | LI Y, LI J J, YU Y H, et al. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice[J]. Journal of Experimental Botany, 2021, 72(13): 4 839-4 852. |
| [53] | CONNOLLY E L, FETT J P, GUERINOT M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. The Plant Cell, 2002, 14(6): 1 347-1 357. |
| [54] | LEE S C, AN G H. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell and Environment, 2009, 32(4): 408-416. |
| [55] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
| [56] | LIU X S, LI H, FENG S J, et al. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice[J]. Gene, 2024, 892: 147 900. |
| [57] | HU S, YU Y, CHEN Q, et al. OsMYB45 plays an important role in rice resistance to cadmium stress[J]. Plant Science, 2017, 264: 1-8. |
| [58] | YUE E K, RONG F X, LIU Z, et al. Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice[J]. Journal of Environmental Sciences, 2023, 130: 149-162. |
| [59] | SHI Y, JIANG W J, LI M Y, et al. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.)[J]. International Journal of Biological Macromolecules, 2023, 245: 125 607. |
| [60] | ZHAO Y N, WANG M Q, LI C, et al. The metallochaperone OsHIPP56 gene is required for cadmium detoxification in rice crops[J]. Environmental and Experimental Botany, 2022, 193: 104 680. |
| [61] | XIONG S, KONG X H, CHEN G Q, et al. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice[J]. Plant, Cell and Environment, 2023, 46(6): 1 946-1 961. |
| [62] | HUANG X Y, DENG F L, YAMAJI N, et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain[J]. Nature Communications, 2016, 7: 12 138. |
| [63] | YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939. |
| [64] | XU E, WU M, LIU Y, et al. The Golgi-localized transporter OsPML3 is involved in manganese homeostasis and complex N-glycan synthesis in rice[J]. Journal of Experimental Botany, 2023, 74(6): 1 853-1 872. |
| [65] | INOUE H, KOBAYASHI T, NOZOYE T, et al. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of Biological Chemistry, 2009, 284(6): 3 470-3 479. |
| [66] | LEE S, CHIECKO J C, KIM S A, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiology, 2009, 150(2): 786-800. |
| [67] | YAMAJI N, MA J F. The node, a hub for mineral nutrient distribution in graminaceous plants[J]. Trends in Plant Science, 2014, 19(9): 556-563. |
| [68] | DENG F L, YAMAJI N, XIA J X, et al. A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice[J]. Plant Physiology, 2013, 163(3): 1 353-1 362. |
| [69] | ISHIMARU Y, SUZUKI M, KOBAYASHI T, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice[J]. Journal of Experimental Botany, 2005, 56(422): 3 207-3 214. |
| [70] | ISHIMARU Y, MASUDA H, SUZUKI M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58(11): 2 909-2 915. |
| [71] | TAN L T, ZHU Y X, FAN T, et al. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118. |
| [72] | TANG L, DONG J Y, TAN L T, et al. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice[J]. Rice, 2021, 14(1): 89. |
| [73] | SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. |
| [74] | SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6 013-6 021. |
| [75] | NAVARRO B B, DEL FRARI B K, DIAS P V D C, et al. The copper economy response is partially conserved in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2021, 158: 113-124. |
| [76] | ZHOU W L, LI C, ZHU Y J, et al. Rice heavy metal P-type ATPase OsHMA6 is likely a copper efflux protein[J]. Rice Science, 2020, 27(2): 143-151. |
| [77] | LEE S, KIM Y, LEE Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007, 145(3): 831-842. |
| [78] | CAO H W, LI C, ZHANG B Q, et al. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity[J]. Agronomy, 2022, 12(2): 488. |
| [79] | SHI Y, JIANG N, WANG M T, et al. OsHIPP17 is involved in regulating the tolerance of rice to copper stress[J]. Frontiers in Plant Science, 2023, 14: 1 183 445. |
| [80] | CHEN G Q, XIONG S. OsHIPP24 is a copper metallochaperone which affects rice growth[J]. Journal of Plant Biology, 2021, 64(2): 145-153. |
| [81] | WANG W J, YE J, MA Y R, et al. OsIRO3 plays an essential role in iron deficiency responses and regulates iron homeostasis in rice[J]. Plants, 2020, 9(9): 1 095. |
| [82] | LI C Y, LI Y, XU P, et al. OsIRO3 negatively regulates Fe homeostasis by repressing the expression of OsIRO2[J]. The Plant Journal, 2022, 111(4): 966-978. |
| [83] | TAKAHASHI R, ISHIMARU Y, NAKANISHI H, et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11): 1 813-1 816. |
| [84] | CHU Z H, YUAN M, YAO J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. Genes and Development, 2006, 20(10): 1 250-1 255. |
| [85] | ZHANG Y Y, CHEN K, ZHAO F J, et al. OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution[J]. Plant Physiology, 2018, 178(1): 329-344. |
| [86] | SEREGIN I V, KOZHEVNIKOVA A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium[J]. Russian Journal of Plant Physiology, 2008, 55(1): 1-22. |
| [87] | YAMAJI N, MA J F. Node-controlled allocation of mineral elements in Poaceae[J]. Current Opinion in Plant Biology, 2017, 39: 18-24. |
| [88] | XIA R Z, ZHOU J, CUI H B, et al. Nodes play a major role in cadmium (Cd) storage and redistribution in low-Cd-accumulating rice (Oryza sativa L.) cultivars[J]. Science of The Total Environment, 2023, 859: 160 436. |
| [89] | YAMAJI N, SASAKI A, XIA J X, et al. A node-based switch for preferential distribution of manganese in rice[J]. Nature Communications, 2013, 4: 2 442. |
| [90] | HAO X, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. |
| [91] | URAGUCHI S, KAMIYA T, CLEMENS S, et al. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
| [92] | SCHRECK E, FOUCAULT Y, SARRET G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead[J]. Science of the Total Environment, 2012, (427/428): 253-262. |
| [93] | CAO X Y, TAN C Y, WU L H, et al. Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice[J]. Science of the Total Environment, 2020, 700: 134 513. |
| [94] | FENG W L, GUO Z H, XIAO X Y, et al. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 180: 160-167. |
| [95] | XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. |
| [96] | XU Z Q, ZHU Z, ZHAO Y H, et al. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions[J]. Environmental Pollution, 2022, 306: 119 390. |
| [97] | SCHULZ A, THOMPSON G A. Phloem structure and function[R]. American Cancer Society, 2009. doi:10.1002/9780470015902.A0001290.PUB2. |
| [98] | COLLIS H L, OWEN M R, BAND L R. Long-distance hormone transport via the phloem[J]. Journal of Theoretical Biology, 2023, 562: 111 415. |
| [99] | OPARKA K J, CRUZ S S. THE GREAT ESCAPE: Phloem transport and unloading of macromolecules[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 323-347. |
| [100] | TIAN S Q, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120 853. |
| [101] | CAO H W, ZHAO Y N, LIU X S, et al. A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops[J]. Environmental Pollution, 2022, 311: 120 058. |
| [102] | INOUE H, HIGUCHI K, TAKAHASHI M, et al. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. The Plant Journal, 2003, 36(3): 366-381. |
| [103] | AUNG M S, MASUDA H, NOZOYE T, et al. Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice[J]. Frontiers in Plant Science, 2019, 10: 660. |
| [104] | KOIKE S, INOUE H, MIZUNO D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. The Plant Journal, 2004, 39(3): 415-424. |
| [105] | ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese: OsYSL2 is required for Fe and Mn transport to the endosperm[J]. The Plant Journal, 2010, 62(3): 379-390. |
| [106] | AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of Lamina joints[J]. Plant Molecular Biology, 2009, 70(6): 681-692. |
| [107] | SASAKI A, YAMAJI N, XIA J X, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiology, 2011, 157(4): 1 832-1 840. |
| [108] | SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant Molecular Biology, 2017, 95(4): 375-387. |
| [109] | ZHANG C, SHINWARI K I, LUO L, et al. OsYSL13 is involved in iron distribution in rice[J]. International Journal of Molecular Sciences, 2018, 19(11): 3 537. |
| [110] | ZHENG L Q, YAMAJI N, YOKOSHO K, et al. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice[J]. The Plant Cell, 2012, 24(9): 3 767-3 782. |
| [111] | ZOU Y, XU E D, FAN Y, et al. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice[J]. Plant Physiology and Biochemistry, 2023, 203: 108054. |
| [112] | YUAN M, LI X H, XIAO J H, et al. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice[J]. BMC Plant Biology, 2011, 11(1): 69. |
| [113] | 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7 929. |
| [114] | 裴峰, 王广达, 高鹏, 等. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1):16-28. |
| [115] | XU J, XIONG W T, CAO B B, et al. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice[J]. Planta, 2013, 238(4): 643-655. |
| [116] | XIONG W T, WANG P, YAN T Z, et al. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots[J]. Planta, 2018, 247(5): 1 247-1 260. |
| [117] | GAO Q S, LIU L, ZHOU H Y, et al. Mutation in OsFWL7 affects cadmium and micronutrient metal accumulation in rice[J]. International Journal of Molecular Sciences, 2021, 22(22): 12 583. |
| [118] | WANG F J, TAN H F, HAN J H, et al. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice[J]. Environmental Sciences Europe, 2019, 31(1): 1-13. |
| [119] | 程通, 王小兵, 董君能, 等. 原位钝化对稻田镉污染土壤修复效果及土壤酶活性的影响[J]. 中国稻米, 2023, 29(2):28-33. |
| [120] | 许肖博, 安鹏虎, 郭天骄, 等. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35(5):415-426. |
| [121] | TU M, DU C H, YU B J, et al. Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic, and metabolomic approaches[J]. Frontiers in Plant Science, 2023, 14: 1 147 328. |
| [122] | GHORI N H, GHORI T, HAYAT M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1 807-1 828. |
| [123] | ROY S, MATHUR P, CHAKRABORTY A P, et al. Plant Stress: Challenges and Management in the New Decade[M]. Berlin, Germany: Springer International Publishing, 2022. |
| [124] | HUANG S, YAMAJI N, SAKURAI G, et al. A pericycle-localized silicon transporter for efficient xylem loading in rice[J]. The New Phytologist, 2022, 234(1): 197-208. |
| [125] | BISWAS A, PAL S, PAUL S. Silicon as a powerful element for mitigation of cadmium stress in rice: A review for global food safety[J]. Plant Stress, 2023, 10: 100 237. |
| [126] | XU X J, SUN S K, ZHANG W W, et al. Editing silicon transporter genes to reduce arsenic accumulation in rice[J]. Environmental Science and Technology, 2024, 58(4): 1 976-1 985. |
| [127] | YAMAJI N, SAKURAI G, MITANI-UENO N, et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36): 11 401-11 406. |
| [128] | MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691. |
| [129] | YAMAJI N, MITATNI N, MA J F. Transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1 381-1 389. |
| [130] | YAN G C, FAN X P, TAN L, et al. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice[J]. Plant Physiology and Biochemistry, 2021, 158: 219-227. |
| [131] | MITANI-UENO N, YAMAJI N, MA J F. High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice[J]. Plant and Cell Physiology, 2016, 57(12): 2 510-2 518. |
| [132] | HUANG F Y, LI Z M, YANG X, et al. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study[J]. Science of the Total Environment, 2024, 918: 170 663. |
| [133] | RIAZ M, KAMRAN M, RIZWAN M, et al. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review[J]. Chemosphere, 2021, 273: 129 690. |
| [134] | WANG X X, JIANG J C, DOU F G, et al. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes[J]. Paddy and Water Environment, 2021, 19(4): 569-584. |
| [135] | ZENG P, WEI B Y, ZHOU H, et al. Co-application of water management and foliar spraying silicon to reduce cadmium and arsenic uptake in rice: A two-year field experiment[J]. Science of the Total Environment, 2022, 818: 151 801. |
| [136] | CHEN H X, HUANG X Y, CHEN H, et al. Effect of silicon spraying on rice photosynthesis and antioxidant defense system on cadmium accumulation[J]. Scientific Reports, 2024, 14(1): 15 211-15 265. |
| [137] | 李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2):86-95. |
| [138] | HIMENO S, SUMI D, FUJISHIRO H. Toxicometallomics of cadmium, manganese and arsenic with special reference to the roles of metal transporters[J]. Toxicological Research, 2019, 35(4): 311-317. |
| [139] | GUAN D, WU J M, XIE Y H, et al. Double prevention of cadmium uptake by iron and zinc in rice seedling—A hypotonic study[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(1): 318-330. |
| [140] | WANG M E, YANG Y, CHEN W P. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in Southern China[J]. Journal of Environmental Quality, 2018, 47(2): 306-311. |
| [141] | QIN S Y, LIU H E, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review[J]. Pedosphere, 2020, 30(2): 168-180. |
| [142] | LIU C L, DING S L, ZHANG A P, et al. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding[J]. Journal of Integrative Plant Biology, 2020, 62(3): 349-359. |
| [143] | 操宏伟. OsHIPP16响应Cd胁迫下调节水稻解毒功能的鉴定[D]. 南京: 南京农业大学, 2021. |
| [144] | TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4 843-4 850. |
| [145] | YANG M, ZHANG W, DONG H X, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PloS One, 2013, 8(12): e83990. |
| [146] | QU Z T, NAKANISHI H. Amino acid residues of the metal transporter OsNRAMP5 responsible for cadmium absorption in rice[J]. Plants, 2023, 12(24): 4 182. |
| [147] | PERIS-PERIS C, SERRA-CARDONA A, SANCHEZ-SANUY F, et al. Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice[J]. Molecular Plant-Microbe Interactions, 2017, 30(5): 385-398. |
| [148] | PHI N B, PHUONG N D N, DAT V H X, et al. Expression profiles of OsNramp6 transcript variants involving in Magnaporthe oryzae resistance and non-resistance of Vietnamese rice cultivars[J]. European Journal of Plant Pathology, 2021, 161(4): 907-916. |
| [1] | FENG Yupeng, HE Juan, LIANG Jian, LIU Akang, CHEN Danyang, WAN Kejiang. Challenges and Reflections Suggestions on Large-Scale Yield Improvement of Rice in China [J]. China Rice, 2025, 31(6): 1-3. |
| [2] | Zhaxiluobu , Guoluozhuoma , Yangzong , Jiumei , Sangjieluobu , PENG Hong, XIE Huabin, LI Jiayang, CHEN Chun, WANG Jiafeng. Molecular Marker-assisted Improvement of Jiabare for Enhancing Resistance to Rice Blast and Bacterial Leaf Blight [J]. China Rice, 2025, 31(6): 102-108. |
| [3] | MAO Xiaomei, XUE Meiqin, ZHU Lijing, YANG Jian. Effects of the “Greenhouse Tomato-Single Season Rice” Rotation Model on Soil Properties and Rice Growth and Yields [J]. China Rice, 2025, 31(6): 109-112. |
| [4] | XU Jianhua, GUO Jing. Rice Variety Selection and Key Techniques for Shrimp-Rice Co-cultivation [J]. China Rice, 2025, 31(6): 113-116. |
| [5] | GU Tianfei, ZHOU Naidi, YING Junjie, TANG Sizhong, HE Haohao, CHEN Huizhe, SHEN Xihong, ZHU Guiping. Research of High Quality and High Efficiency Cultivation Technique and Industrialization Development of Jiaheyou 7245 [J]. China Rice, 2025, 31(6): 117-120. |
| [6] | HU Xianqiao, LU Lin, FU Yuanmiao, JIANG Huiping, SHAN Yue, CHEN Mingxue, DING Liqun. Quality Analysis of Leading Rice Varieties in Major Production Areas of China [J]. China Rice, 2025, 31(6): 12-19. |
| [7] | ZHU Shanzi, GU Xingguo. Research on Promoting the Inheritance and Development of Rice Farming Culture through the Protection of Rice Germplasm Resources: A Case Study of Agricultural Heritage Sites in Zhejiang Province [J]. China Rice, 2025, 31(6): 121-126. |
| [8] | LI Li, HU Liqin, Deng Qichang, CAO Wei, CAO Fangbo, CHEN Jiana, HUANG Min. Comparison on Digestion Properties of Cooked Rice of Early- and Late-season Rice Varieties [J]. China Rice, 2025, 31(6): 20-24. |
| [9] | FANG Zuan, WU Shangshang, YANG Renyuan, CHEN Peng, CHEN Mengjie, ZHAI Rongrong, YE Jing, WU Mingming, YE Shenghai. Research Progress on Breeding of Sterile Lines in Japonica Rice in China [J]. China Rice, 2025, 31(6): 25-32. |
| [10] | WANG Yaliang, ZHU Defeng, SHEN Hongfang, WAN Kejiang, ZHU Hui, ZHANG Junhua, WANG Danying, FU Guanfu, WAN Pinjun, TANG Wei, CHEN Huizhe, LI Chunsheng, XU Shuren. Rice Yield and Efficiency Large-Scale Improvement Technologies Integration Innovation and Application——Taking Guangde as an Example [J]. China Rice, 2025, 31(6): 4-8. |
| [11] | LIU Xiaoge, WANG Yang, DAI Zhigang, WANG Benfu, LI Xiaokun. Patterns of Dry Matter Accumulation and Nitrogen, Phosphorus, and Potassium Nutrient Absorption in Double-cropping Rice Varieties in Hubei Province [J]. China Rice, 2025, 31(6): 46-54. |
| [12] | TAN Yujiao, WANG Haojun, ZHANG Shuntao, WANG Ting, TAN Yulong, LI Pengli, BAI Jianguo, TANG Wei, LV Shihua, ZHANG Fusuo, XU Jiuliang. Effects of Plastic Film Mulching and Nitrogen Fertilizer Application Rate on Rice Yield and Nitrogen Use Efficiency in the Erhai Lake Region [J]. China Rice, 2025, 31(6): 55-65. |
| [13] | ZHANG Meiwei, PAN Junfeng, SUN Hua, WU Xiaofei, YANG Yuchun, HU Yifan, XIA Li, SONG Hongbin, YU Xiaoyun, DENG Zhibin, XIA Jing. Screening and Evaluation of Mechanically Harvested Ratoon Rice Varieties in Jiangxi Province [J]. China Rice, 2025, 31(6): 66-71. |
| [14] | HE Bing, WANG Xiaohang, LI Chao, FU Lianshuo, ZHANG Minglei, ZHANG Qiang, HAN Kangshun, CHEN Dianyuan, WANG Shuai. Analysis of Rice Breeding Objectives, Traits, and Development Trends in Jilin Province ——Based on Questionnaire Survey Data from Frontline Personnel in Rice Genetic Breeding in Jilin [J]. China Rice, 2025, 31(6): 72-77. |
| [15] | HE Xin, ZHANG Liping, ZHAO Chunfang, ZHU Hong, LU Haiyan, LIU Xianjin, XU Chongxin, ZHANG Xiao, XIE Yajing, HANG Xiangrong. Quality Characteristics and Differences in Planting Regions of Typical Green-labelled Japonica Rice in Jiangsu Province [J]. China Rice, 2025, 31(6): 78-84. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||