[1] |
YU Q, CUI Y, HAN H, et al. Modelling water consumption and nitrogen loss in paddy fields with an improved ORYZA model[J]. Field Crops Research, 2023, 292(3): 1-12.
|
[2] |
YANG R, XU H. Water diversion and agricultural production: Evidence from China[J]. Journal of Integrative Agriculture, 2023, 22(4):1244-1 257.
|
[3] |
HOU D, WEI Y, LIU K, et al. The response of grain yield and quality of water-saving and drought-resistant rice to irrigation regimes[J]. Agriculture, Multidisciplinary Digital Publishing Institute, 2023, 13(2): 302-314.
|
[4] |
YAO F X, HUANG J L, CUI K H, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation[J]. Field Crops Research, 2012, 126(2): 16-22.
|
[5] |
KATO Y, OKAMI M. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions[J]. Annals of Botany, 2011, 108(3): 575-583.
|
[6] |
TAI Y P, Li Z A, MCBRIDE M B, et al. Dry cultivation enhances cadmium solubility in contaminated soils but minimizes cadmium accumulation in a leafy vegetable[J]. Journal of Soils and Sediments, 2017, 17(12): 2 822-2 830.
|
[7] |
STONE E C, HORNBERGER G M. Impacts of management alternatives on rice yield and nitrogen losses to the environment: A case study in rural Sri Lanka[J]. Science of The Total Environment, 2016, 542(1): 271-276.
|
[8] |
CARRIJO D R, LUNDY M E, LINQUIST B A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis[J]. Field Crops Research, 2017, 203(3):173-180.
|
[9] |
潘晨, 杨宇, 漆栋良. 不同灌溉条件下氮肥配施模式对水稻干物质和产量的影响[J]. 灌溉排水学报, 2023, 42(2):73-78.
|
[10] |
LIU L J, CHEN T, WANG Z, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154(12): 226-235.
|
[11] |
王玉雯, 郭九信, 孔亚丽, 等. 氮肥优化管理协同实现水稻高产和氮肥高效[J]. 植物营养与肥料学报, 2016, 22(5):1157-1 166.
|
[12] |
周婵婵, 黄元财, 贾宝艳, 等. 施氮量和灌溉方式的交互作用对东北粳稻稻米品质的影响[J]. 中国水稻科学, 2019, 33(4):357-367.
|
[13] |
曹小闯, 刘晓霞, 马超, 等. 干湿交替灌溉改善稻田根际氧环境进而促进氮素转化和水稻氮素吸收[J]. 植物营养与肥料学报, 2022, 28(1):1-14.
|
[14] |
WU W, NIE L X, LIAO Y C, et al. Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China[J]. European Journal of Agronomy, 2013, 45(2): 75-86.
|
[15] |
PAL R, MAHAJAN G, SARDANA V, et al. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India[J]. Field Crops Research, 2017, 206(5): 138-148.
|
[16] |
WEI H Y, HU L, ZHU Y, et al. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice[J]. Field Crops Research, 2018, 218(4): 88-96.
|
[17] |
MAHAJAN G, CHAUHAN B S. Performance of dry direct-seeded rice in response to genotype and seeding rate[J]. Agronomy Journal, 2016, 108(1): 257-265.
|
[18] |
PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by site specific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 649-656.
|
[19] |
张绍文, 何巧林, 王海月, 等. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2018, 24(1):82-94.
|
[20] |
陈云, 刘昆, 李婷婷, 等. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响[J]. 中国水稻科学, 2022, 36(3):269-277.
|
[21] |
SU Q, CANG B, ULLAH R, et al. Interaction of the coupled effects of irrigation mode and nitrogen fertilizer timing on rice yield in different regions[J]. Irrigation and Drainage, 2023, 20(3): 1-13.
|
[22] |
吴龙龙, 虞轶俊, 田仓, 等. 干湿交替灌溉下施氮模式对水稻光合产物和氮转运的影响[J]. 中国水稻科学, 2022, 36(3):295-307.
|
[23] |
PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2008, 12(1): 3-8.
|
[24] |
褚光, 徐冉, 陈松, 等. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础[J]. 中国农业科学, 2021, 54(7):1499-1 511.
|
[25] |
YE Y S, LIANG X Q, CHEN Y X, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144(3): 212-224.
|
[26] |
ZHANG W Y, YU J X, XU Y J, et al. Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice[J]. Field Crops Research, 2021, 268(7): 1-12.
|
[27] |
CHEN J, ZHU X C, XIE J, et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system[J]. The Crop Journal, 2021, 9(4): 805-815.
|
[28] |
史鸿儒, 张文忠, 解文孝, 等. 不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J]. 作物学报, 2008, 34(11):1985-1 993.
|
[29] |
JABRAN K, RIAZ M, HUSSAIN M, et al. Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment[J]. Environmental Science and Pollution Research, 2017, 24(8): 12 971-12 981.
|
[30] |
马群, 杨雄, 李敏, 等. 不同氮肥群体最高生产力水稻品种的物质生产积累[J]. 中国农业科学, 2011, 44(20):4159-4 169.
|
[31] |
PAN J F, CUI K H, WEI D, et al. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels[J]. Physiologia Plantarum, 2011, 141(4): 321-331.
|
[32] |
BAGHERIKIA S, PAHLEVANI M, YAMCHI A, et al. Transcript profiling of genes encoding fructan and sucrose metabolism in wheat under terminal drought stress[J]. Journal of Plant Growth Regulation, 2019, 38(6): 148-163.
|
[33] |
MORITA S, NAKANO H. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat‐tolerant rice cultivar Nikomaru[J]. Crop Science, 2011, 51(2): 818-828.
|
[34] |
邓飞, 王丽, 刘利, 等. 不同生态条件下栽培方式对水稻干物质生产和产量的影响[J]. 作物学报, 2012, 38(10):1930-1 942.
|
[35] |
ZHANG Z J, CHU G, LIU L J, et al. Mid-season nitrogen application strategies for rice varieties differing in panicle size[J]. Field Crops Research, 2013, 150(8): 9-18.
|