中国稻米 ›› 2022, Vol. 28 ›› Issue (3): 10-19.DOI: 10.3969/j.issn.1006-8082.2022.03.003
牛淑琳1,2(), 唐苗苗2,3, 杜晨阳2,3, 王增兰1, 谢先芝1,*(
), 郑崇珂2(
)
收稿日期:
2021-11-19
出版日期:
2022-05-20
发布日期:
2022-05-24
通讯作者:
谢先芝
作者简介:
牛淑琳,nsl199811@163.com
基金资助:
NIU Shulin1,2(), TANG Miaomiao2,3, DU Chenyang2,3, WANG Zenglan1, XIE Xianzhi1,*(
), ZHENG Chongke2(
)
Received:
2021-11-19
Online:
2022-05-20
Published:
2022-05-24
Contact:
XIE Xianzhi
About author:
NIU Shulin, nsl199811@163.com
摘要:
水稻是世界上最重要的粮食作物之一,为全球超过半数人口提供食物来源。近些年来,随着温饱问题的解决,稻米品质日益受到关注。随着现代生物技术和生物信息技术的发展,控制稻米品质的基因相继被克隆并应用于水稻育种。本文综述了稻米品质调控分子机制,并对干旱、低温、高温、盐胁迫对稻米品质的影响进行了概述,以期为改善非生物胁迫下的稻米品质提供参考。
中图分类号:
牛淑琳, 唐苗苗, 杜晨阳, 王增兰, 谢先芝, 郑崇珂. 稻米品质调控的分子基础及非生物胁迫对稻米品质的影响[J]. 中国稻米, 2022, 28(3): 10-19.
NIU Shulin, TANG Miaomiao, DU Chenyang, WANG Zenglan, XIE Xianzhi, ZHENG Chongke. Molecular Bases of Rice Quality Regulation and Effects of Abiotic Stress on Rice Quality[J]. China Rice, 2022, 28(3): 10-19.
[1] | WANG C L. Status and prospects of hybrid rice breeding in Jiangsu, China[J]. Rice Science, 2005, 12(3): 219-225. |
[2] | FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: the quest for quality[J]. Trends Plant Science, 2009, 14(3): 133-139. |
[3] | ZHOU H, XIA D, HE Y. Rice grain quality - traditional traits for high quality rice and health-plus substances[J]. Molecular Breeding, 2020, 40(1): 1-17 |
[4] | 国家市场监督管理总局, 中国国家标准化管理委员会.GB/T1354-2018, 大米[S]. |
[5] | 王志东, 赖穗春, 李宏, 等. 稻米食味品质评价方法的研究进展与展望[J]. 广东农业科学, 2011, 38(13):18-20. |
[6] | 陈明江, 刘贵富, 余泓, 等. 水稻高产优质的分子基础与品种设计[J]. 科学通报, 2018, 63(14):29-43. |
[7] | 王拥政. 提高水稻食品加工质量要点与对策[J]. 农村实用科技信息, 2004(6):37. |
[8] | 张隽娴, 夏珍珍, 张仙, 等. 我国稻米品质与安全标准概述及思考[J]. 中国稻米, 2021, 27(4):1-7. |
[9] | LI Y, FAN C, XING Y, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[10] | WANG Y, XIONG G, HU J, et al. Copy number variation at the GL7locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[11] | FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[12] | WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1 199-1 209. |
[13] | LIU J, CHEN J, ZHENG X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3:17043. |
[14] | YING J Z, MA M, BAI C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753. |
[15] | LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[16] | QI P, LIN Y S, SONG X J, et al. Controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1 666-1 680. |
[17] | WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[18] | WANG E, WANG J, ZHU X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1 370-1 374. |
[19] | SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[20] | TIAN Z, QIAN Q, LIU Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21 760-21 765. |
[21] | NAOKO F, MAYUMI Y, NORIKO A, et al. Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiology, 2006, 140(3): 1 070. |
[22] | 高振宇, 曾大力, 崔霞, 等. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析[J]. 中国科学, 2003, 33(6):481-487. |
[23] | CHEN S, YANG Y, SHI W, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. The Plant Cell, 2008, 20(7): 1 850-1 861. |
[24] | ZHOU H, WANG L, LIU G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12 844-12 849. |
[25] | PENG B, KONG H, LI Y, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5(1): 4 847. |
[26] | FUKUDA M, KAWAGOE Y, MURAKAMI T, et al. The dual roles of the Golgi Transport 1 (GOT1B): RNA localization to the cortical endoplasmic reticulum and the export of proglutelin and α-globulin from the cortical ER to the golgi[J]. Plant & Cell Physiology, 2016, 57(11): 2 380-2 391. |
[27] | SATOH H. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed[J]. Plant & Cell Physiology, 2010, 51(1): 38. |
[28] | FUKUDA M, WEN L, SATOH-CRUZ M, et al. A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm[J]. Plant Physiology, 2013, 162(2): 663-674. |
[29] | FUKUDA M, SATOH-CRUZ M, WEN L, et al. The small GTPase Rab5a is essential for intracellular transport of proglutelin from the Golgi apparatus to the protein storage vacuole and endosomal membrane organization in developing rice endosperm[J]. Plant Physiology, 2011, 157(2): 632-644. |
[30] | YANG Y, GUO M, SUN S, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1 949. |
[31] | SIRIPHAT, RUENGPHAYAK, VINITCHAN, et al. Forward screening for seedling tolerance to Fe toxicity reveals a polymorphic mutation in ferric chelate reductase in rice[J]. Rice, 2015, 8(1): 36. |
[32] | KOIKE S, INOUE H, MIZUNO D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. Plant Journal, 2010, 39(3): 415-424. |
[33] | ISHIKAWA S, LSHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171 . |
[34] | JIAN F M, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935 . |
[35] | SUN S K, XU X, TANG Z, et al. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain[J]. Nature Communications, 2021, 12(1): 1392. |
[36] | CHEN M, YU H, LI J, et al. Towards molecular design of rice plant architecture and grain quality[J]. Chinese Science Bulletin, 2018, 63(14): 1275-1289 . |
[37] | SUN S, WANG L, MAO H, et al. A G-protein pathway determines grain size in rice[J]. Nature Communications, 2018, 9(1): 851. |
[38] | HU Z J, LU S J, WANG M J, et al. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 5: 736-749. |
[39] | XU C J, LIU Y, LI Y B, et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany, 2015, 66(9): 2611-2623 . |
[40] | GAO X, ZHANG J Q, ZHANG X, et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. The Plant Cell, 2019, 31(5): 1077-1093 . |
[41] | CHEN S, WU J, YANG Y, et al. The fgr gene responsible for rice fragrance was restricted within 69 kb[J]. Plant Science, 2006, 171(4): 505-514. |
[42] | WANG Z Y, WU Z L, XING Y Y, et al. Nucleotide sequence of rice waxy gene[J]. Nucleic Acids Research, 1990, 18(19): 5898. |
[43] | ZHANG C, YANG Y, CHEN S, et al. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2020, 63(5): 889-901. |
[44] | ZENG D, LIU T, MA X, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9‐based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2385-2387 . |
[45] | XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2020, 19(1): 11-13. |
[46] | JEON J S, RYOO N, HAHN T R, et al. Starch biosynthesis in cereal endosperm[J]. Plant Physiology and Biochemistry, 2010, 48(6): 383-392. |
[47] | 陈专专, 杨勇, 冯琳皓, 等. Wx与ALK主要等位基因不同组合对稻米品质的影响[J]. 中国水稻科学, 2020, 34(3):228-236. |
[48] | ZHANG G, CHENG Z, ZHANG X, et al. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch[J]. Genome, 2011, 54(6): 448-459. |
[49] | 江绍玫, 徐朗莱, 万建民. 水稻谷蛋白研究进展[J]. 江西农业大学学报, 2002, 24(1): 14-19. |
[50] | WANG X, XIA M, CHEN Q, et al. Identification of a new small gtp-binding protein gene osrab5a, genomic organization, and expression pattern analysis during nitrate supply and early nutrient starvation in rice (Oryza sativa L.) root[J]. Plant Science, 2002, 163(2): 273-280. |
[51] | WEN L, FUKUDA M, SUNADA M, et al. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm[J]. Journal of Experimental Botany, 2015, 20: 6 137-6 147. |
[52] | MOCHIZUKI T, HARA S. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure[J]. The Japanese Journal of Nephrology, 2000, 42(1): 24-29. |
[53] | LI L, YE L, KONG Q, et al. A vacuolar membrane ferric-chelate reductase, OsFRO1, alleviates Fe toxicity in rice (Oryza sativa L.)[J]. Plant Science, 2019, 10: 700. |
[54] | 张现伟, 杨莉, 张涛, 等. 水稻籽粒锌含量的QTL定位[J]. 植物学报, 2009, 44(5):594-600. |
[55] | 孙明茂,. 水稻籽粒铁、 硒、锌、铜等矿质元素和花色苷含量的遗传及QTL分析[D]. 泰安: 山东农业大学, 2006. |
[56] | 张现伟, 杨莉, 张涛, 等. 水稻子粒硒含量的遗传及QTL检测[J]. 植物遗传资源学报, 2010, 11(4):445-450. |
[57] | 田雨, 王友海, 王学安, 等. 水稻重金属污染研究进展[J]. 农业科技通讯, 2016(2):10-12. |
[58] | JIAN F M, YAMAJI N, MITANI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212. |
[59] | 唐绍清. 稻米蒸煮和营养品质性状的QTL定位[D]. 杭州: 浙江大学, 2007. |
[60] | 刘东华. 干旱胁迫对稻谷品质性状及Wx基因表达的影响[D]. 武汉: 华中农业大学, 2014. |
[61] | 王成瑷, 王伯伦, 张文香, 等. 不同生育时期干旱胁迫对水稻产量与碾米品质的影响[J]. 中国水稻科学, 2007, 21(6):643-649. |
[62] | YANG X, WANG B, CHEN L, et al. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality[J]. Scientific Reports, 2019, 9(1): 3 742. |
[63] | HAIDER Z, MEHBOOB A, RAZAQ A, et al. Effect of drought stress on some grain quality traits in rice (Oryza sativa L.)[J]. Agricultural Research, 2014, 2(5): 128-133. |
[64] | 张家亮. 幼穗分化期干旱胁迫对水稻谷粒大小和GS3基因表达的影响[J]. 武汉:华中农业大学, 2009. |
[65] | 白艳波. SA、 ABA、PEG、预处理对水分胁迫下水稻矿质元素含量的影响[D]. 沈阳: 沈阳师范大学, 2013. |
[66] | 王平荣, 邓晓建, 高晓玲, 等. 干旱对稻米品质的影响研究[J]. 中国农学通报, 2004, 20(6):282-284. |
[67] | 李国生, 张慎凤, 王学明, 等. 结实期土壤水分对水稻产量与品质的影响[J]. 中国农学通报, 2007, 23(12):177-181. |
[68] | 段骅. 抽穗灌浆早期高温干旱胁迫下编码水稻淀粉合酶不同基因的表达模式[C]// 江苏省植物生理青年学术年会, 2012. |
[69] | 任红茹. 孕穗期低温冷害对水稻产量形成、生理特性和稻米品质的影响[D]. 扬州: 扬州大学, 2018. |
[70] | 王士强, 程式华, 宋晓慧, 等. 孕穗期低温胁迫对寒地水稻产量和品质的影响[J]. 农业现代化研究, 2016, 37(3):579-586. |
[71] | 褚春燕, 王锦冬, 程远, 等. 孕穗-灌浆期低温对三江平原主栽水稻品种品质的影响[J]. 中国农业气象, 2018, 39(11):751-561. |
[72] | 武琦. 不同生育时期低温胁迫下寒地粳稻淀粉积累规律的研究[D]. 哈尔滨: 东北农业大学, 2013. |
[73] | SIDDIK M A. 抽穗前后极端温度对籼稻产量和品质的影响及其机理[D]. 北京: 中国农业科学院, 2019. |
[74] | 吕晓, 张兵兵, 杨璐, 等. 水稻拔节期和抽穗期低温对稻米品质影响[J]. 广东农业科学, 2020, 47(2):1-8. |
[75] | 张荣萍. 灌浆前期低温胁迫对籼粳稻产量和品质的影响[J]. 江苏农业科学, 2015, 43(8):63-68. |
[76] | CAO Y Y, ZHAO H. Protective roles of brassinolide on rice seedlings under high temperature stress[J]. Rice Science, 2008, 15(1): 63-68. |
[77] | WHEELER S J P C. High temperature stress and spikelet fertility in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2007, 58(7): 1627-1635. |
[78] | 姜华武. 水稻胚乳淀粉合成相关基因克隆与高温影响稻米品质的分子生理学机制研究[D]. 杭州: 浙江大学, 2003. |
[79] | ZHANG C Q, ZHOUL H, ZHU Z B, et al. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage[C]// 江苏省遗传学会2016年学术年会论文摘要集. 南京: 江苏省遗传学会, 2016. |
[80] | CHUN A, LEE H J, HAMAKER B R, et al. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3 085-3 093. |
[81] | 林翠香, 倪大虎, 宋丰顺, 等. 高温胁迫下水稻生理特性变化及适应机制研究进展[J]. 安徽农学通报, 2020, 26(24):37-42. |
[82] | 滕中华, 智丽, 宗学凤, 等. 高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响[J]. 作物学报, 2008, 34(9):1 662-1 666. |
[83] | 黄福灯. 高温胁迫下水稻耐热生理研究[D]. 杭州: 浙江大学, 2010. |
[84] | 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻花器官和产量构成要素及稻米品质的影响[J]. 湖南农业大学学报(自科版), 2007, 33(2):132-136. |
[85] | 金正勋, 杨静, 钱春荣, 等. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响[J]. 中国水稻科学, 2005, 19(4): 377-380. |
[86] | LIN C J, LI C Y, LIN S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural & Food Chemistry, 2014, 58(19): 10 545-10 552. |
[87] | GUILIAN Z, BIN L, BO L, et al. The effect of high temperature after anthesis on rice quality and starch granule structure of endosperm[J]. Meteorological and Environmental Research, 2016, 7(3): 72-75. |
[88] | 谢晓金, 李秉柏, 李映雪, 等. 抽穗期高温胁迫对水稻产量构成要素和品质的影响[J]. 中国农业气象, 2010, 31(3):411-415. |
[89] | TASHIRO T. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice[J]. Australian Journal of Agricultural Research, 1991, 42(3): 485-496. |
[90] | HIROMOTO T H, MASAHARU K, YAMAGUCHI T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray[J]. Plant Physiology, 2007, 144(1): 258-277. |
[91] | 查曼. 高温影响水稻不同Wx等位基因表达及品质形成的研究[D]. 扬州: 扬州大学, 2017. |
[92] | 曹珍珍. 高温对水稻花器伤害和籽粒品质影响的相关碳氮代谢机理[D]. 杭州: 浙江大学, 2014. |
[93] | 罗成科, 肖国举, 张峰举, 等. 不同浓度复合盐胁迫对水稻产量和品质的影响[J]. 干旱区资源与环境, 2017, 31(1):137-141. |
[94] | 余为仆. 秸秆还田条件下盐胁迫对水稻产量与品质形成的影响[D]. 扬州: 扬州大学, 2014. |
[95] | THITISAKSAKUL M, TANANUWONG K, SHOEMAKER C F, et al. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality[J]. Journal of Agricultural & Food Chemistry, 2015, 63(8): 2 296-2 304. |
[96] | RAO P S, MISHRA B, GUPTA S R. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes[J]. Rice Science, 2013, 20(4): 284-291. |
[97] | 肖丹丹, 李军, 邓先亮, 等. 不同品种稻米品质形成对盐胁迫的响应[J]. 核农学报, 2020, 34(8):1 840-1 847. |
[98] | 马凌霄, 张素红, 孙杰. 高盐浓度筛选对水稻产量和品质的影响[J]. 北方水稻, 2017, 47(6):13-17. |
[99] | 翟彩娇, 邓先亮, 张蛟, 等. 盐分胁迫对稻米品质性状的影响[J]. 中国稻米, 2020, 26(2):44-48. |
[100] | SALEETHONG P, SANITCHON J, KONG-NGERN K, et al. Effects of exogenous spermidine (Spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. Indica) grains under salt stress[J]. Australian Journal of Crop Science, 2013, 7(9): 1 293-1 301. |
[101] | VERMA T S, NEUE H U. Effect of soil salinity level and zinc application on growth, yield, and nutrient composition of rice[J]. Plant & Soil, 1984, 82(1): 3-14. |
[102] | 陈景阳. 盐胁迫下稻米微量元素与营养因子间的相关性分析[D]. 湛江: 广东海洋大学, 2019. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||