中国稻米 ›› 2024, Vol. 30 ›› Issue (6): 15-22.DOI: 10.3969/j.issn.1006-8082.2024.06.003
夏昕彤1,2(), 戴淑婷1,2, 张萌恩1,2, 王旭东1,2, 何丽芝1,2,*(
), 柳丹1,2
收稿日期:
2024-01-05
出版日期:
2024-11-20
发布日期:
2024-11-19
通讯作者:
*helizhi@zafu.edu.cn作者简介:
2021603042011@stu.zafu.edu.cn
基金资助:
XIA Xintong1,2(), DAI Shuting1,2, ZHANG Mengen1,2, WANG Xudong1,2, HE Lizhi1,2,*(
), LIU Dan1,2
Received:
2024-01-05
Published:
2024-11-20
Online:
2024-11-19
Contact:
*helizhi@zafu.edu.cnAbout author:
2021603042011@stu.zafu.edu.cn
摘要:
水稻作为全球重要的粮食作物之一,在保障粮食安全、促进经济社会发展等方面起着重要作用。稻田重金属(HMs)污染会影响水稻正常生长,导致产量和品质下降,甚至危害人类身体健康。根表铁膜是在水稻根表面形成的铁锰(氢)氧化物胶膜,能够通过氧化-还原、吸附-解吸、共沉淀等物理化学作用,影响重金属自水稻根部到籽粒的迁移和积累。本文阐明了植物通过根表铁膜对重金属的外源性抵抗和内源性耐受机制,综述了水分管理、施肥(有机肥、化肥、叶面肥等)、根系通气能力等对根表铁膜形成的影响,及对重金属在水稻体内积累与迁移的影响。促进高重金属积累量的红褐色铁膜形成的钝化剂或修复手段可作为未来重金属污染土壤安全利用的研究方向。
中图分类号:
夏昕彤, 戴淑婷, 张萌恩, 王旭东, 何丽芝, 柳丹. 根表铁膜对水稻体内重金属迁移积累影响的研究进展[J]. 中国稻米, 2024, 30(6): 15-22.
XIA Xintong, DAI Shuting, ZHANG Mengen, WANG Xudong, HE Lizhi, LIU Dan. Research Progress on the Effect of Root Surface Iron Plaque on the Transfer and Accumulation of Heavy Metals in Rice[J]. China Rice, 2024, 30(6): 15-22.
[1] | 郑沈, 黄道友, 李波, 等. 外源Fe调控根系微生物群落和功能对水稻Cd积累的影响[J]. 环境科学, 2022, 43(8):4313-4 321. |
[2] | KHAN N, SESHADRI B, BOLAN N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants[J]. Advances in Agronomy, 2016, 138: 1-96. |
[3] | TAI Y P, TAM N, WANG R, et al. Iron plaque formation on wetland-plant roots accelerates removal of water-borne antibiotics[J]. Plant and Soil, 2018, 433: 323-338. |
[4] | ZHOU X B, LI Y Y. Effect of iron plaque and selenium on mercury uptake and translocation in rice seedlings grown in solution culture[J]. Environmental Science and Pollution Research, 2019, 26(14): 13 795-13 803. |
[5] | 刘春英, 陈春丽, 弓晓峰, 等. 湿地植物根表铁膜研究进展[J]. 生态学报, 2014, 34(10):2470-2 480. |
[6] | 肖德顺, 徐冉, 王丹英, 等. 根表铁膜对水稻磷素吸收影响研究进展[J]. 中国稻米, 2022, 28(4):1-5. |
[7] | 赵燕, 项华, 熊娜, 等. 亚铁胁迫对水稻生长及矿质元素积累的影响[J]. 中国稻米, 2018, 24(3):30-38. |
[8] | CAO Z Z, QIN M L, LIN X Y, et al. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J]. Environmental Pollution, 2018, 238: 76-84. |
[9] | LIU S H, JI X H, CHEN Z L, et al. Silicon facilitated the physical barrier and adsorption of cadmium of iron plaque by changing the biochemical composition to reduce cadmium absorption of rice roots[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114 879. |
[10] | GU J F, HUO Y, ZENG P, et al. Increasing phosphorus inhibits the retention and prevention of cadmium by iron plaque and promotes cadmium accumulation in rice plants[J]. Chemosphere, 2022, 307: 135 642. |
[11] | 杨旭健, 傅友强, 沈宏, 等. 水稻根表铁膜及其形成的形态、生理及分子机理综述[J]. 生态学杂志, 2014, 33(8):2235-2 244. |
[12] | 杜艳艳, 王欣, 谢伟城, 等. 负载铁生物炭对土壤-水稻系统As溶出特性与生物有效性的影响与机理解析[J]. 环境科学学报, 2017, 37(8):3158-3 168. |
[13] | HUANG Y C, CHEN Z, LIU W J. Influence of iron plaque and cultivars on antimony uptake and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V)[J]. Plant and Soil, 2012, 352: 41-49. |
[14] | OKKENHAUG G, ZHU Y G, HE J W, et al. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice[J]. Environmental Science & Technology, 2012, 46(6): 3 155-3 162. |
[15] | 高阿祥. 硒与根表铁膜对水稻吸收汞的调控效应[D]. 重庆: 西南大学, 2018. |
[16] | HANSEL C M, FENDORF S, SUTTON S, et al. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants[J]. Environmental Science & Technology, 2001, 35(19): 3 863-3 868. |
[17] | PEVERLY J H, SURFACE J M, WANG T. Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment[J]. Ecological Engineering, 1995, 5(1): 21-35. |
[18] | ALI N A, BERNAL M P, ATER M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays[J]. Plant and Soil, 2002, 239(1): 103-111. |
[19] | 董明芳, 郭军康, 冯人伟, 等. Fe2+和Mn2+对水稻根表铁膜及镉吸收转运的影响[J]. 环境污染与防治, 2017, 39(3):249-253. |
[20] | 于志红, 周莉, 沈跃, 等. 铜污染棕壤中6种钝化材料对小油菜吸收铜的影响[J]. 安全与环境学报, 2016, 16(1):239-244. |
[21] | LIU J G, LENG X M, WANG M X, et al. Iron plaque formation on roots of different rice cultivars and the relation with lead uptake[J]. Ecotoxicology and Environmental Safety, 2011, 74(5): 1 304-1 309. |
[22] | SEYFFERTH A L. Abiotic effects of dissolved oxyanions on iron plaque quantity and mineral composition in a simulated rhizosphere[J]. Plant and Soil, 2015, 397: 43-61. |
[23] | LIU D Q, ZHANG C H, CHEN X, et al. Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice[J]. Environmental Science and Pollution Research, 2013, 20(12): 8 947-8 954. |
[24] | 李莹, 张洲, 杨高明, 等. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8):1657-1 666. |
[25] | 傅友强. 干湿交替诱导水稻根表红棕色铁膜形成的生理与分子机理[D]. 广州: 华南农业大学, 2017. |
[26] | 王丹. 硫素对水稻根系铁锰胶膜形成及吸收镉的影响[D]. 郑州: 河南农业大学, 2015. |
[27] | 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J]. 生态学报, 2007, 27(9):3930-3 939. |
[28] | 方皓. 水分管理对水稻根表铁膜及POD酶活的影响[J]. 广东化工, 2018, 45(15):121-123. |
[29] | 张天娇, 汤佳, 庄莉, 等. 干湿交替条件下不同晶型铁氧化物对水稻土甲烷排放的影响[J]. 环境科学, 2014, 35(3):901-907. |
[30] | 苏玲林, 咸永, 章永松, 等. 水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2):8-12. |
[31] | 张雨婷, 田应兵, 黄道友, 等. 典型污染稻田水分管理对水稻镉累积的影响[J]. 环境科学, 2021, 42(5):2512-2 521. |
[32] | 陈佳, 赵秀兰. 水分管理与施硅对水稻根表铁膜及砷镉吸收的影响[J]. 环境科学, 2021, 42(3):1535-1 544. |
[33] | 丁汉卿, 赖聪玲, 沈宏. 干湿交替和过氧化物对水稻根表铁膜及养分吸收的影响[J]. 生态环境学报, 2015, 24(12):1983-1 988. |
[34] | 雷小琴. 非稳态pe+pH下水稻土中S形态变化对Cd有效性的影响机制[D]. 北京: 中国农业科学院, 2021. |
[35] | YANG L, FAN L, HUANG B F, et al. Efficiency and mechanisms of fermented horse manure, vermicompost, bamboo biochar, and fly ash on Cd accumulation in rice[J]. Environmental Science and Pollution Research, 2020, 27(22): 27 859-27 869. |
[36] | YIN A G, SHEN C, HUANG Y Y, et al. Reduction of Cd accumulation in Se-biofortified rice by using fermented manure and fly ash[J]. Environmental Science and Pollution Research International, 2020, 27(31): 39 391-39 401. |
[37] | ZHENG S, LIAO Y L, XU C, et al. Milk vetch returning reduces rice grain Cd concentration in paddy fields: Roles of iron plaque and soil reducing-bacteria[J]. Chemosphere, 2022, 308: 136 158. |
[38] | 王洪政. 施肥措施改变后水稻根表铁膜组分变化特性[D]. 长沙: 湖南农业大学, 2021. |
[39] | YU H Y, LI F B, LIU C S, et al. Chapter five: Iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of South China[J]. Advances in Agronomy, 2016, 137: 279-317. |
[40] | DU J N, YAN C L, LI Z D. Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74: 105-109. |
[41] | LU Y, HU S W, WANG Z M, et al. Ferrihydrite transformation under the impact of humic acid and Pb: Kinetics, nanoscale mechanisms, and implications for C and Pb dynamics[J]. Environmental Science: Nano, 2019, 6(3): 747-762. |
[42] | MAISCH M, LUEDER U L F, KAPPLER A, et al. From plant to paddy—how rice root iron plaque can affect the paddy field iron cycling[J]. Soil Systems, 2020, 4(2): 28. |
[43] | WANG J W, ZHANG G Y, YU C Q. A meta-analysis of the effects of organic and inorganic fertilizers on the soil microbial community[J]. Journal of Resources and Ecology, 2020, 11(3): 298-303. |
[44] | SHIMAMURA S, MOCHIZUKI T, NADA Y, et al. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions[J]. Plant and Soil, 2003, 251: 351-359. |
[45] | 林辉, 孙万春, 王飞, 等. 有机肥中重金属对菜田土壤微生物群落代谢的影响[J]. 农业环境科学学报, 2016, 35(11):2123-2 130. |
[46] | ZHOU X B, SHI W M, ZHANG L H. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture[J]. Plant and Soil, 2007, 290: 17-28. |
[47] | ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. The Plant Journal, 2006, 45(3): 335-346. |
[48] | 于晓莉, 傅友强, 甘海华, 等. 干湿交替对作物根际特征及铁膜形成的影响研究进展[J]. 土壤, 2016, 48(2):225-234. |
[49] | CHAN C S, DYKES G E, HOOVER R L, et al. Gallionellaceae in rice root plaque: metabolic roles in iron oxidation, nutrient cycling, and plant interactions[J]. Applied and Environmental Microbiology, 2023, 89: e0057023. |
[50] | ZHANG Q Q, YAN Z Z, BI Y X, et al. Iron plaque crystallinity, heavy metal toxicity, and metal translocation in Kandelia obovata seedlings as altered by an iron-reducing bacterium under different flooding regimes[J]. Plant and Soil, 2023, 487: 267-282. |
[51] | 陈金媛, 靳梦楠, 范芳娟, 等. 铁氧化菌促进水稻铁膜的形成及其对Cd迁移的阻隔[J]. 生物学杂志, 2023, 40(2):75-79. |
[52] | XIAO A W, LI W C, YE Z H. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110 136. |
[53] | KONG F Y, LU S G. Effects of microbial organic fertilizer (MOF) application on cadmium uptake of rice in acidic paddy soil: Regulation of the iron oxides driven by the soil microorganisms[J]. Environmental Pollution, 2022, 307: 119 447. |
[54] | XU Q, ZHANG Y X, YANG R J, et al. The utilization of Lysinibacillus bacterial powder to induce Fe plaque formation mitigates cadmium and chromium levels in rice[J]. Journal of Hazardous Materials, 2024, 463: 132 825. |
[55] | DONG M F, FENG R W, WANG R G, et al. Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and as accumulation in rice plant tissues[J]. Plant and Soil, 2016, 404: 75-83. |
[56] | 赵雨涵. 水稻土铁锰氧化菌的筛选及其产物对镉的吸附效应[D]. 扬州: 扬州大学, 2021. |
[57] | 董明芳. 根际铁锰氧化菌对水稻铁锰膜形成和Cd吸收转运的影响[D]. 南宁: 广西大学, 2017. |
[58] | WU Y, WANG S L, XU J, et al. Simultaneous immobilization of multiple heavy metal(loid)s in contaminated water and alkaline soil inoculated Fe/Mn oxidizing bacterium[J]. Journal of Environmental Sciences, 2025, 147: 370-381. |
[59] | 傅友强, 梁建平, 于智卫, 等. 不同铁形态对水稻根表铁膜及铁吸收的影响[J]. 植物营养与肥料学报, 2011, 17(5):1050-1 057. |
[60] | 吴明胤, 陶祥运, 李磊明, 等. 硫酸亚铁诱导根表铁膜形成对水稻吸收和转运铜锌的影响[J]. 安徽农业大学学报, 2018, 45(4):650-656. |
[61] | ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium transport[J]. Scientific Reports, 2012, 2: 286. |
[62] | FU Y Q, YANG X J, SHEN H. The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency[J]. Acta Physiologiae Plantarum, 2014, 36(1): 179-190. |
[63] | 赵婷婷, 王春丽, 赵秀兰. 不同磷肥对水稻根表铁膜及砷镉吸收的影响——以石灰岩黄壤性水稻土为例[J]. 中国环境科学, 2021, 41(1):297-306. |
[64] | 霍洋. 外源磷对水稻镉吸收和累积的影响研究[D]. 长沙: 中南林业科技大学, 2021. |
[65] | 傅友强, 杨旭健, 吴道铭, 等. 磷素对水稻根表红棕色铁膜的影响及营养效应[J]. 中国农业科学, 2014, 47(6):1072-1 085. |
[66] | YANG J X, LIU Z Y, WAN X M, et al. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant[J]. Ecotoxicology and Environmental Safety, 2016, 128: 206-212. |
[67] | SUN L J, ZHENG C Q, YANG J J, et al. Impact of sulfur (S) fertilization in paddy soils on copper (Cu) accumulation in rice (Oryza sativa L.) plants under flooding conditions[J]. Biology and Fertility of Soils, 2016, 52(1): 31-39. |
[68] | ZANDI P M, YANG J J, DARMA A, et al. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.)[J]. Environmental Geochemistry and Health, 2023, 45: 525-559. |
[69] | SUN L J, SONG K, SHI L Z, et al. Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants[J]. Scientific Reports, 2021, 11: 11 468. |
[70] | 赵萌. 硫对水稻根区微界面有效态镉的影响及机制[D]. 北京: 中国农业科学院, 2021. |
[71] | 晏士玮. 外源硫酸盐对土壤-水稻系统生物有效性及迁移转化的影响[D]. 合肥: 安徽农业大学, 2022. |
[72] | 苏素苗, 杨春雷, 饶雄飞, 等. 硅对植物抗逆性影响的研究进展[J]. 华中农业大学学报, 2022, 41(6):160-168. |
[73] | 傅友强, 沈宏, 杨旭健. 适度干湿交替促进水稻根表红棕色铁膜形成的根层诱导机制[J]. 植物生理学报, 2017, 53(12):2167-2 180. |
[74] | LIMMER M A, THOMAS J, SEYFFERTH A L. The effect of silicon on the kinetics of rice root iron plaque formation[J]. Plant and Soil, 2022, 477: 171-181. |
[75] | 向焱赟, 张小毅, 尹林芝, 等. 氮肥前移对水稻镉吸收转运的影响[J]. 分子植物育种, 2024, 22(9):2996-3 004. |
[76] | 田伟. 不同时期施氮肥对水稻镉吸收与分配的影响[D]. 长沙: 湖南农业大学, 2021. |
[77] | ABIKO T, OBARA M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots[J]. Plant Science, 2014, 215-216: 76-83. |
[78] | ZHANG X, YANG Y Q, FU Q L, et al. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 2021, 21(7): 2 650-2 658. |
[79] | SHINGO M, KIKUO K, JINYA Y, et al. Dynamic aspects of N.P.K. uptake and O2 secretion in relation to the metabolic pathways within the plant roots[J]. Soil Science and Plant Nutrition, 1962, 8 (2): 25-30. |
[80] | GUO Y, ZHU C H, GAN L J, et al. Ethylene is involved in the complete-submergence induced increase in root iron and manganese plaques in Oryza sativa[J]. Plant Growth Regulation, 2015, 76(3): 259-268. |
[81] | YAMAUCHI T, YOSHIOKA M, FUKAZAWA A, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions[J]. Plant Cell, 2017, 29(4): 775-790. |
[82] | 张明富, 王松, 李佳原, 等. 乙烯和水分管理对水稻Cd积累和健康风险指数的影响[J]. 热带作物学报, 2024, 45(5):1072-1 083. |
[83] | 郭月. 乙烯和赤霉素参与调节完全淹水诱导的水稻根表锰膜形成[D]. 南京: 南京农业大学, 2014. |
[84] | MENDELSSOHN I A, KLEISS B A, WAKELEY J S. Factors controlling the formation of oxidized root channels: A review[J]. Wetlands, 1995, 15: 37-46. |
[85] | EMERSON D, WEISS J V, MEGONIGAL J P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants[J]. Applied and Environmental Microbiology, 1999, 65(6): 2 758-2 761. |
[86] | KING G M, GAREY M A. Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes[J]. Applied and Environmental Microbiology, 1999, 65(10): 4 393-4 398. |
[87] | MAISCH M, LUEDER U, KAPPLER A, et al. Iron lung: How rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe(II)-oxidizing bacteria[J]. Environmental Science & Technology Letters, 2019, 6: 600-605. |
[88] | WU C, YE Z H, LI H, et al. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J]. Journal of Experimental Botany, 2012, 63(8): 2 961-2 970. |
[89] | 刘依依, 傅志强, 龙文飞, 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究[J]. 农业现代化研究, 2015, 36(6):1105-1 111. |
[90] | GHOSH P, KASHYAP A K. Effect of rice cultivars on rate of N-mineralization, nitrification and nitrifier population size in an irrigated rice ecosystem[J]. Applied Soil Ecology, 2003, 24(1): 27-41. |
[91] | 李霖. 施硅对水稻生长及砷吸收的影响[D]. 南京: 南京信息工程大学, 2017. |
[92] | WU C, ZOU Q, XUE S G, et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)[J]. Environmental Pollution, 2016, 212: 27-33. |
[93] | COLMER T D, COX M C H, VOESENEK L A C J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. The New Phytologist, 2006, 170(4): 767-778. |
[94] | ZHANG Q, WEN Q R, MA T C, et al. Cadmium-induced iron deficiency is a compromise strategy to reduce Cd uptake in rice[J]. Environmental and Experimental Botany, 2023, 206: 105 155. |
[95] | 陈博. 淹水对不同土壤镉浓度下水稻镉吸收和转运的影响[D]. 长沙: 湖南农业大学, 2023. |
[96] | LEE C, HSIEH Y, LIN T, et al. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice[J]. Plant and Soil, 2013, 363: 231-241. |
[97] | 程志龙, 王翔翔, 杨英, 等. 不同改良剂对土壤-水稻体系中Cd迁移积累的影响[J]. 环境科学与技术, 2023, 46(2):24-31. |
[98] | 任超, 李竞天, 朱利文, 等. 不同钝化剂对碱性镉污染土壤钝化效果研究[J]. 环境科学与技术, 2021, 44(3):71-78. |
[99] | 曹雲清, 徐晓燕, 韩磊, 等. 全生育期淹水联合钝化材料对重度Cd污染下水稻生长和镉富集的影响[J]. 农业环境科学学报, 2018, 37(11):2498-2 506. |
[100] | 郭华, 陈振焱, 胡超, 等. 铁基生物炭对镉污染农田土壤的修复作用研究[J]. 环境科学与技术, 2020, 43(5):195-202. |
[101] | FENG Q, SU S, ZHU Q, et al. Simultaneous mitigation of Cd and As availability in soil-rice continuum via the addition of an Fe-based desulfurization material[J]. Science of the Total Environment, 2022, 812: 152 603. |
[102] | RAHMAN M A, HASEGAWA H, RAHMAN M M, et al. Effect of iron (Fe2+) concentration in soil on arsenic uptake in rice plant (Oryza sativa L.) when grown with arsenate [As(V)] and dimethylarsinate (DMA)[J]. Water Air Soil Pollution, 2013, 224: 1 623. |
[103] | 景睿, 裴楠, 狄雪荣, 等. 赤铁矿与巯基坡缕石复配对砷镉复合污染土壤修复效应研究[J]. 农业环境科学学报, 2023, 43(2):285-293. |
[104] | LIU G F, MENG J, ZENG L Z, et al. Novel agricultural waste-based materials decrease the uptake and accumulation of cadmium by rice (Oryza sativa L.) in contaminated paddy soils[J]. Environmental Pollution, 2021, 289: 117 838. |
[105] | SUI F F, KANG Y X, WU H, et al. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system[J]. Ecotoxicology and Environmental Safety, 2021, 225: 112 764. |
[106] | ZHAO M, LIU X W, LI Z T, et al. Inhibition effect of sulfur on Cd activity in soil-rice system and its mechanism[J]. Journal of Hazardous Materials, 2021, 407: 124 647. |
[107] | 罗海艳. 铁锰改性生物炭对土壤镉砷形态及水稻积累镉砷的影响[D]. 长沙: 湖南农业大学, 2019. |
[108] | ZHANG P, MA Y H, ZHANG Z Y, et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)[J]. Environmental Science and Ecotechnology, 2012, 46(3): 1 834-1 841. |
[109] | GEISLER-LEE J, WANG Q, YAO Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana[J]. Nanotoxicology, 2013, 7: 323-337. |
[110] | MA Y, ZHANG P, ZHANG Z Y, et al. Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place?[J]. Environmental Science and Ecotechnology, 2015, 49(17): 10 667-10 674. |
[111] | ZHANG P, MA Y H, ZHANG Z Y, et al. Biotransformation of cera nanoparticles in cucumber plants[J]. ACS Nano, 2012, 11(6): 9 943-9 950. |
[112] | 刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响[D]. 广州: 华南理工大学, 2017. |
[113] | 张竞颐. 纳米铁生物炭对水稻根表铁膜形成及Cd吸收累积的影响[D]. 长沙: 中南林业科技大学, 2020. |
[114] | 胡露, 陈奇, 李云霞, 等. 柠檬酸对纳米氧化铁诱导水稻根表铁膜形成及对水稻铁吸收转运的影响[J]. 农业环境科学学报, 2017, 36(11):2185-2 191. |
[115] | 杨时运. 铁基纳米材料对镉砷复合污染稻田的钝化效应与反应机制[D]. 贵阳: 贵州大学, 2021. |
[116] | 顾时国. 纳米生物炭对水稻根表铁膜形成与转化的促进作用与机制[D]. 无锡: 江南大学, 2022. |
[117] | GAO S, CAO W D, GAO J, et al. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China[J]. Journal of Integrative Agriculture, 2017, 16(4): 959-966. |
[118] | LIANG T, ZHOU G P, CHANG D N, et al. Co-incorporation of chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.)[J]. Science of the Total Environment, 2022, 850: 158 060. |
[119] | ZHOU G P, GAO S J, LU Y H, et al. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in Southern China[J]. Soil & Tillage Research, 2020, 197: 104 499. |
[1] | 代帅军, 张运波, 黄礼英. 粮食作物早发的研究进展[J]. 中国稻米, 2025, 31(1): 1-10. |
[2] | 温雅, 顾嘉怡, 王超瑞, 张瑛, 肖治林, 张耗. 水稻高产减排的氮肥管理技术及其对稻田温室气体排放影响的研究进展[J]. 中国稻米, 2025, 31(1): 11-17. |
[3] | 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 干旱胁迫下水杨酸对不同耐旱性水稻品种生长和生理特性的影响#br#[J]. 中国稻米, 2025, 31(1): 27-34. |
[4] | 毛晓红, 李懿芸, 傅琳琳. 浙江粮食生产特征与产能提升对策研究[J]. 中国稻米, 2025, 31(1): 44-53. |
[5] | 余艳锋, 袁婷婷, 余永琦, 孙明珠. 江西粮食产业现状及高质量发展对策[J]. 中国稻米, 2025, 31(1): 54-60. |
[6] | 段俊枝, 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞. WRKY转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2025, 31(1): 61-67,73. |
[7] | 王英, 马建森, 王芳, 刘汝亮, 洪瑜, 冒辛平. 引黄灌区水稻氮高效品种筛选评价[J]. 中国稻米, 2025, 31(1): 74-78,83. |
[8] | 谌江华, 肖山, 郑炜, 柴伟纲, 姚红燕. 水稻二化螟性诱智能监测效果研究[J]. 中国稻米, 2025, 31(1): 89-93. |
[9] | 吴华宇, 吴红淼, 李忠, 吴文革. 水稻机插侧深施肥技术的发展及技术要点[J]. 中国稻米, 2025, 31(1): 94-99. |
[10] | 康洪灿, 李国生, 王锦艳, 张义, 段浩平, 尹正钦, 何荣满, 钏兴宽. 播种期对水稻两用核不育系育性转化和自交结实率的影响[J]. 中国稻米, 2025, 31(1): 100-105. |
[11] | 张少波, 张金成. 寒地水稻侧深变量施肥技术探讨#br#[J]. 中国稻米, 2025, 31(1): 106-108. |
[12] | 王彩艳, 郑良燕, 于兰, 徐旻鹰, 顾兴国. 浙江稻作农业文化遗产时空特征、多重价值及保护发展研究[J]. 中国稻米, 2025, 31(1): 112-119. |
[13] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[14] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
[15] | 陈书融, 何禹畅, 秦碧蓉, 王婕, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 金千瑜, 朱练峰. 稻田配施氮肥增效剂的应用研究进展[J]. 中国稻米, 2024, 30(6): 23-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||