[1] Yuan L P. Hybrid rice breeding for super high yield[J]. Hybrid Rice, 1997, 12(6): 1-6. [2] Zhang Q F. Strategies for developing green super rice[J]. Proc Natl Acad Sci USA, 2007, 104(42), 16402-16409. [3] Boysen J P. Die stoffproduktion der pflangen[M]. Jena: Gustav Fischer, 1932: 108.[4] Heath D V, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance[J]. Ann Botany, 1938, 2: 811-818.[5] Donald C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403.[6] 杨守仁. 水稻株型研究进展[J]. 作物学报,1982,8(3):205-209.[7] 黄耀祥. 水稻超高产育种研究[J]. 作物杂志,1990(4):1-2. [8] 周开达,马玉清,刘太清,等. 杂交水稻亚种间重穗型组合的选育—杂交水稻超高产育种的理论与实践[J]. 四川农业大学学报,1995,13(4):403-407.[9] 朱德峰. 国际水稻研究所水稻新株型的研究现状与新动向[J]. 作物研究,1996,1(4):35-36.[10] 薛大伟,钱前. 中国超级稻遗传基础与资源创新[J]. 沈阳农业大学学报,2007,38(5):667-675.[11] 郑景生,林文. 超高产水稻根系发育形态学研究[J]. 福建农业学报,1999,14(3):1-6.[12] 朱德峰,林贤青,曹卫星. 超高产水稻品种的根系分布特点[J]. 南京农业大学学报,2000,23(4):5-8.[13] 凌启鸿,陆卫平,蔡建中,等. 水稻根系分布与叶角关系的研究初报[J]. 作物学报,1989,15(2):123-131.[14] 石庆华,李木英,徐益群,等. 水稻根系特征与地上部关系的研究初报[J]. 江西农业大学学报,1995,17(2):110-114.[15] 杨守仁. 杨守仁水稻文选[M]. 沈阳:辽宁科技出版社,2000.[16] 杨惠杰,杨仁崔,李义珍,等. 水稻茎秆性状与抗倒性的关系[J]. 福建农业学报,2000,15(2):1-7.[17] 饶玉春,李跃,董国军,等. 水稻抗倒伏研究进展[J]. 中国稻米,2009,15(6):15-19.[18] 八木忠一. 水稻茎秆强度与有关性状的品种差异[J]. 育种学杂志,1983,33(4):411-422.[19] 穆平,李自超,李春平,等. 水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析[J]. 遗传学报,2004,31(7):717-723.[20] 严松,严长杰,顾铭洪. 植物叶发育的分子机理[J]. 遗传,2008,30(9):1127-1135.[21] 贺再新. 水稻理想株型研究进展与育种策略[J]. 湖南农业科学,2005(1):11-13.[22] 陈宗祥,潘学彪,胡俊. 水稻卷叶性状与理想株型的关系[J]. 江苏农业研究,2001,22(4):88-91.[23] 朱德峰,林贤青,曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较[J]. 作物学报,2001,27(3):329-333.[24] 吕川根,谷福林,邹江石,等. 水稻理想株型品种的生产潜力及其相关特性研究[J]. 中国农业科学,1991,24(5):15-22.[25] 肖应辉,余铁桥,唐湘如. 大穗型水稻单株产量构成研究[J]. 湖南农业大学学报,1998,24(6):428-431.[26] 杨守仁,张龙步,陈温福,等. 水稻超高产育种的理论和方法[J]. 沈阳农业大学学报,1996,27(1):1-7.[27] 马汉云,王青林,吴淑平,等. 水稻株型的遗传研究进展[J]. 中国种业,2008(4):13-15.[28] 曾勇军,石庆华,潘晓华,等. 水稻理想株型的研究进展[J]. 中国稻米,2006(1):1-3.[29] 潘学彪,韩月澎,陈宗祥,等. 水稻植株形态遗传改良的研究进展[J]. 扬州大学学报: 农业与生命科学版,2004,25(1):36-40.[30] 张成良,姜伟 ,肖叶青,等. 水稻根系研究现状与展望[J]. 江西农业学报,2006,18(5):23-27.[31] Kamoshita A, Wade L, Ali M, et al. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions[J]. Theor App Genet, 2002, 104(5): 880-893.[32] 班超,张晓玲,穆平. 水稻根系性状QTL 的整合、分类和真实性分析[J]. 中国农学通报,2009,25(19):20-25.[33] Yu Z, Hu Y F, Qiu M, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice[J]. Plant Cell, 2009, 21(3): 736-748.[34] Jiang H W, Wang S M, Dang L, et al. A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice[J]. Plant Physiol, 2005, 138(1): 232-242.[35] Chhun T, Taketa S, Tsurumi S, et al. The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice(Oryza sativa L.)[J]. Plant Growth Regul, 2003, 39(2): 161-170.[36] 吴海滨,张淑玲,赵德刚. 水稻主要农业性状的QTL定位及一个极度偏分离分子标记的分析[A].海南生物技术研究与发展研讨会论文集[C],2006.[37] 谭震波,沈利爽,况浩池,等.水稻上部节间长度等数量性状基因的定位及其遗传效应分析[J]. 遗传学报,1996,23(6):439-446.[38] Ookawa T, Hobo T, Yano M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nat Commun, 2010, 1: 132.[39] Ueguchi T M, Fujisawa Y, Kobayashi M, et al. Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction[J]. Proc Natl Acad Sci USA, 2000, 97(21): 11638-11643.[40] Hong Z, Ueguchi T M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450 [J]. Plant Cell, 2003, 15(12): 2900-2910.[41] Ishikaw S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice [J]. Plant Cell Physiol, 2005, 46(1): 79-86.[42] Sato Y, Sentoku N, Nagato Y, et al. Isolation and characterization of a rice homebox gene, OSH15 [J]. Plant Mol Biol, 1998, 38(6): 983-997.[43] Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant J, 2007, 51(6): 1019-1029.[44] Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length [J]. Plant Cell, 2005, 17(3): 776-790.[45] Arite T, Umehara M, Ishikawa S, et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant Cell Physiol, 2009, 50(8): 1416-1424.[46] Itoh H, Tatsumi T, Sakamoto T, et al. A rice semi-dwarf gene, Tan-Ginbozu(D35), encodes the gibberellin biosynthesis enzyme, ent-Kaurene Oxidase [J]. Plant Mol Biol, 2004, 54(4): 533-547.[47] Li, Y H., Qian Q, Zhou Y H, et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants [J]. Plant Cell, 2003, 15(9): 2020-2031.[48] Zhou Y H, Li S B, Qian Q, et al. BC10, a DUF 266-containing and Golgi-located type II membrane protein is required for cell-wall biosynthesis in rice(Oryza sativa L.)[J]. Plant J, 2009, 57(3): 446-462.[49] Zhang B C, Liu X L, Qian Q, et al. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice [J]. Proc Natl Acad Sci USA, 2011, 108(12): 5110-5115.[50] Wu B, Zhang B C, Dai Y, et al. Brittle culm15 encodes a membrane-associated chitinase protein required for cellulose biosynthesis in rice [J]. Plant Physiol, 2012, 159(4): 1440-1452.[51] 郭光荣. 以生物产量和收获指数作为水稻育种指标的初步研究[J]. 湖南农业科学,1990,19(5):20 -22.[52] 夏仲炎. 粳稻叶型的遗传与选择的研究[J]. 作物学报,1983,9(3):275-282.[53] 沈锦骅,王恒立. 自花授粉作物性状遗传力的估算和应用[M]. 北京: 农业出版社,1963: 99-125.[54] 李仕贵,马玉清,何平,等. 一个未知卷叶基因的识别和定位[J]. 四川农业大学学报,1998,16(4):391-393.[55] 沈福成. 关于水稻卷叶性状在育种中利用的几点看法[J]. 贵州农业科学,1983(5):6-8.[56] Xiang J J, Zhang G H, Qian Q, et al. SRL1 encodes a putative GPI-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiol, 2012, 159: 1-13.[57] Ohmori Y, Toriba T, Nakamura H, et al. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice [J]. Plant J, 2011, 65(1): 77-86.[58] Zhao S Q, Hu J, Guo L B, et al. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar[J]. Cell Res, 2010, 20(8): 935-947.[59] 刘坚,陶红剑,施思,等. 水稻穗型的遗传和育种改良[J]. 中国水稻科学,2012,26(2):227-234.[60] Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.[61] Huang X Z, Qian Q, Liu Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009, 41(4): 494-497.[62] Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5): 623-630.[63] Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008, 18(12): 1199-1209.[64] Wang S K, Wu K, Yuan Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012, 44(8): 950-954[65] Takano K N, Jiang H, Kubo T, et al. Evolutionary history of GS3, a gene conferring grain length in rice[J]. Genetics, 2009, 182(4): 1323-1334.[66] Li Y B, Fan C C, Xing Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size[J]. Nat Genet, 2011, 43(12): 1266-1269.[67] Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621.[68] Xu C, Wang Y H, Yu Y C, et al. Degradation of MONOCULM1 by APC/CTAD1 regulates rice tillering[J]. Nat Commun, 2012, 3: 750.[69] Wang Y H, Li J Y. Branching in rice[J]. Curr Opin Plant Biol, 2010, 14(1): 1-6.[70] Lin H, Wang R X, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. Plant Cell, 2009, 21(5): 1512-1525.[71] Gao Z Y, Qian Q, Liu X H, et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant[J]. Plant Mol Biol, 2009, 71(3): 265-276.[72] Takeda T, Suwa Y, SuzukiM, et al. The OsTB1 gene negativel regulates lateral branching in rice[J]. Plant J, 2003, 33(3): 513-520.[73] Jiao Y Q, Wang Y H, Xue D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.[74] 冯永祥,徐正进,王聪,等. 水稻株型的研究进展[J]. 内蒙古民族大学学报:自然科学版,2003,18(3):260-264. |