中国稻米 ›› 2025, Vol. 31 ›› Issue (3): 21-29.DOI: 10.3969/j.issn.1006-8082.2025.03.004
郑希1(), 戎念杭1, 覃金华2, 冯向前2, 徐春梅2, 章秀福2, 王丹英2, 陈松2,*(
)
收稿日期:
2024-07-03
出版日期:
2025-05-20
发布日期:
2025-05-14
通讯作者:
* chensong02@caas.cn作者简介:
第一作者:xzheng@zju.edu.cn
基金资助:
ZHENG Xi1(), RONG Nianhang1, QIN Jinhua2, FENG Xiangqian2, XU Chunmei2, ZHANG Xiufu2, WANG Danying2, CHEN Song2,*(
)
Received:
2024-07-03
Published:
2025-05-20
Online:
2025-05-14
Contact:
* chensong02@caas.cnAbout author:
1st author: xzheng@zju.edu.cn
摘要:
显微技术(Microscopy)是利用光学系统或电子光学系统设备,观察肉眼无法辨识的微小物体形态结构及其特性的技术,目前已广泛应用于稻米加工、外观、蒸煮与营养品质的研究。本文着重介绍了在稻米品质研究中应用的主要显微镜技术,具体包括透射电子显微镜、扫描电子显微镜以及激光扫描共聚焦显微镜,详细阐述了这些技术的样品制备方法。同时,文章还深入探讨了稻米品质鉴定中观测到的关键微观特性,并系统综述了应用电镜技术在稻米加工、外观、蒸煮食味品质的研究现状。以期推动电子显微镜技术在稻米品质研究中更广泛的应用。
中图分类号:
郑希, 戎念杭, 覃金华, 冯向前, 徐春梅, 章秀福, 王丹英, 陈松. 微观显微镜技术在稻米品质研究中的应用进展[J]. 中国稻米, 2025, 31(3): 21-29.
ZHENG Xi, RONG Nianhang, QIN Jinhua, FENG Xiangqian, XU Chunmei, ZHANG Xiufu, WANG Danying, CHEN Song. Progress in the Application of Microscopic Microscopy in Rice Quality Research[J]. China Rice, 2025, 31(3): 21-29.
[1] | 姚骏恩. 电子显微镜的现状与展望[J]. 电子显微学报, 1998, 17(6):767-776. |
[2] | 王莉, 蒋洪, 孙丽丽. 显微镜的发展综述[J]. 科技信息, 2009(11):117-118. |
[3] | 干蜀毅. 常规扫描电子显微镜的特点和发展[J]. 分析仪器, 2000(1):51-53. |
[4] | 袁莉民. 稻米形成的形态与生理及调控[D]. 扬州: 扬州大学, 2006. |
[5] | 徐柏森, 张耀丽, 何开跃, 等. 植物透射电镜样品制备技术探讨[J]. 中国野生植物资源, 2006, 25(3):41-43. |
[6] | 王戈, 李慧琴, 何琳, 等. 不同加速电压对生物型透射电镜图像的影响[J]. 实验室研究与探索, 2015, 34(7):34-36. |
[7] | 李超, 杨光. 扫描透射电子显微镜及电子能量损失谱的原理及应用[J]. 物理, 2014, 43(9):597-605. |
[8] | ZHANG H, HOU D P, PENG X L, et al. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice[J]. Journal of Integrative Agriculture, 2019, 18(12): 2716-2731. |
[9] | ZHOU L H, LU Y, ZHANG Y D, et al. Characteristics of grain quality and starch fine structure of japonica rice kernels following preharvest sprouting[J]. Journal of Cereal Science, 2020, 95: 103023. |
[10] | OLATUNDE G A, ATUNGULU G G. Milling behavior and microstructure of rice dried using microwave set at 915 MHz frequency[J]. Journal of Cereal Science, 2018, 80: 167-173. |
[11] | BALBINOTI T C V, JORGE L M D M, HAMINIUK C W I, et al. Multiphysics simulation and characterisation of parboiling of long grain rice during hydration[J]. Journal of Cereal Science, 2022, 103: 103391. |
[12] | 谢宏. 稻米储藏陈化作用机理及调控的研究[D]. 沈阳: 沈阳农业大学, 2007. |
[13] | YANG W P, XU P K, ZHANG J C, et al. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. |
[14] | 刘智. 关于稻麦胚乳细胞发育的研究[D]. 扬州: 扬州大学, 2012. |
[15] | 黄雅琴. 双胚苗水稻的生物学特征研究[D]. 郑州: 郑州大学, 2010. |
[16] | 吴立新, 陈方玉. 现代扫描电镜的发展及其在材料科学中的应用[J]. 武钢技术, 2005(6):36-40. |
[17] | CHEN X, XU Y, HOU D W, et al. Effect of heterogeneous protein distribution on in situ pasting properties of black rice starch[J]. LWT-Food Science and Technology, 2022, 153: 112388. |
[18] | 任海斌, 亓盛敏, 王璐, 等. 基于白光干涉、扫描电镜及色差仪的不同留皮度粳米外观特征研究[J]. 粮油食品科技, 2021, 29(2):88-93. |
[19] | MULLER A, CORADI P C, NUNES M T, et al. Effects of cultivars and fertilization levels on the quality of rice milling: A diagnosis using near-infrared spectroscopy, X-ray diffraction, and scanning electron microscopy[J]. Food Research International, 2021, 147: 110524. |
[20] | 陆彦, 张晓敏, 祁琰, 等. 不同透明度水稻籽粒横断面扫描电镜分析[J]. 中国水稻科学, 2018, 32(2):189-199. |
[21] | REN H B, QI S M, ZHANG L H, et al. Variations in the appearance quality of brown rice during the four stages of milling[J]. Journal of Cereal Science, 2021, 102: 103344. |
[22] | 瞿波, 徐运启, 傅丽霞, 等. 扫描电镜在稻米品质鉴定中的应用探讨[J]. 华南农业大学学报, 1992, 11(suppl1):61-62. |
[23] | 瞿波, 徐运启, 傅丽霞. 品质不同的稻米胚乳细胞形态特征的扫描电镜观察[J]. 华中农业大学学报, 1991, 10(4):404-408. |
[24] | 沈波. 早籼稻垩白形成中胚乳淀粉粒发育的电镜观察[J]. 中国水稻科学, 2000, 14(4):34-37. |
[25] | 郝唯卓. 稻米透明度形成的淀粉结构基础及其遗传调控研究[D]. 扬州: 扬州大学, 2021. |
[26] | 汤圣祥, 江云珠, 余汉勇, 等. 早籼胚乳淀粉体的扫描电镜观察[J]. 作物学报, 1999, 25(2):269-272. |
[27] | ZHANG L, ZHAO L L, ZHANG J, et al. Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels[J]. Journal of Cereal Science, 2019, 90: 102854. |
[28] | ZHU L J, DOGAN H, GAJULA H, et al. Study of kernel structure of high-amylose and wild-type rice by X-ray microtomography and SEM[J]. Journal of Cereal Science, 2012, 55(1): 1-5. |
[29] | MA M T, CHEN X J, ZHOU R Z, et al. Surface microstructure of rice starch is altered by removal of granule-associated proteins[J]. Food Hydrocolloids, 2021, 121: 107038. |
[30] | BLENNOW A, HANSEN M, SCHULZ A, et al. The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy[J]. Journal of Structural Biology, 2003, 143(3): 229-241. |
[31] | PAN T, ZHAO L, LIN L S, et al. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process[J]. Food Hydrocolloids, 2017, 66: 227-236. |
[32] | 丁毅, 华泽田, 王芳, 等. 粳稻蛋白质与蒸煮食味品质的关系[J]. 食品科学, 2012, 33(23):42-46. |
[33] | 徐欣源. 加工精度对大米陈化过程中理化及品质特性变化的影响[D]. 南昌: 南昌大学, 2013. |
[34] | WOOD D F, SIEBENMORGEN T J, WILLIAMS T G, et al. Use of microscopy to assess bran removal patterns in milled rice[J]. Journal of Agricultural and Food Chemistry, 2012, 60(28): 6960-6965. |
[35] | WATSON C A, DIKEMAN E, STERMER R A. A note on surface lipid content and scanning electron microscopy of milled rice as related to degree of milling[J]. Cereal Chemistry, 1975, 52: 742-747. |
[36] | ZHOU Z K, ROBARDS K, HELLIWELL S, et al. Effect of rice storage on pasting properties of rice flour[J]. Food Research International, 2003, 36(6): 625-634. |
[37] | SHARMA P, CHAKKARAVARTHI A, SINGH V, et al. Grinding characteristics and batter quality of rice in different wet grinding systems[J]. Journal of Food Engineering, 2008, 88(4): 499-506. |
[38] | LIN Z X, HUANG J R, QIN W Y, et al. Effects of moisture changes on physicochemical properties of rice flour during semidry grinding[J]. Journal of Cereal Science, 2021, 100: 103254. |
[39] | KΜMAR C S, MALLESHI N G, BHATTACHARYA S. A comparison of selected quality attributes of flours: Effects of dry and wet grinding methods[J]. International Journal of Food Properties, 2008, 11(4): 845-857. |
[40] | 石春海, 吴建国, 樊龙江, 等. 不同环境条件下稻米透明度的发育遗传分析[J]. 遗传学报, 2002, 29(1):56-61. |
[41] | DENG F, LIQ P, CHEN H, et al. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage[J]. Carbohydrate Polymers, 2021, 252: 117212. |
[42] | NOORI Z, QARLUQ A G, KAKAR K, et al. Structural features of white-belly and white-core rice endosperm under scanning electron microscopic observation[J]. Agricultural Research, 2022, 11(4): 1-6. |
[43] | YU L, LIU Y H, TONG J H, et al. Reduced grain chalkiness and its possible physiological mechanism in transgenic rice overexpressing l-GalLDH[J]. The Crop Journal, 2015, 3(2): 125-134. |
[44] | DENG F, WANG L, PU S L, et al. Shading stress increases chalkiness by postponing caryopsis development and disturbing starch characteristics of rice grains[J]. Agricultural and Forest Meteorology, 2018, 263: 49-58. |
[45] | ISHIMARU T, HORIGANE A K, IDA M, et al. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress[J]. Journal of Cereal Science, 2009, 50(2): 166-174. |
[46] | GUO L, CHEN W L, TAO L, et al. GWC1 is essential for high grain quality in rice[J]. Plant Science, 2020, 296: 110497. |
[47] | FAN X L, LI Y Q, LU Y, et al. The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature[J]. Food Chemistry, 2019, 301: 125258. |
[48] | FAN X L, LI Y Q, ZHU Y, et al. Characterization of physicochemical qualities and starch structures of two indica rice varieties tolerant to high temperature during grain filling[J]. Journal of Cereal Science, 2020, 93: 102966. |
[49] | XI M, WU W G, XU Y Z, et al. iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice[J]. Plant Physiology and Biochemistry, 2020, 154: 622-635. |
[50] | ZHU L, WU G C, CHENG L L, et al. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity[J]. Food Chemistry, 2019, 289: 616-624. |
[51] | BATISTA C D S, SANTOS J P D, DITTGEN C L, et al. Impact of cooking temperature on the quality of quick cooking brown rice[J]. Food Chemistry, 2019, 286: 98-105. |
[52] | OLI P, WARD R, ADHIKARI B, et al. Parboiled rice: Understanding from a materials science approach[J]. Journal of Food Engineering, 2014, 124: 173-183. |
[53] | RAMLI M E, SALLEH R M, TAJARUDIN H A, et al. Influence of amylose content on phenolics fortification of different rice varieties with butterfly pea (Clitoria ternatea) flower extract through parboiling[J]. LWT, 2021, 147: 111493. |
[54] | DONALD A M, KATO K L, PERRY P A, et al. Scattering studies of the internal structure of starch granules[J]. Starch - Starke, 2001, 53(10): 504-512. |
[55] | CARDOSO M B, PUTAUX J L, SAMIOS D, et al. Influence of alkali concentration on the deproteinization and/or gelatinization of rice starch[J]. Carbohydrate Polymers, 2007, 70(2): 160-165. |
[56] | LIU Q Q, KONG Q, LI X L, et al. Effect of mild-parboiling treatment on the structure, colour, pasting properties and rheology properties of germinated brown rice[J]. LWT- Food Science and Technology, 2020, 130: 109623. |
[57] | ROCKEMBACH C T, HALAL S L M E, MESKO M F, et al. Morphological and physicochemical properties of rice grains submitted to rapid parboiling by microwave irradiation[J]. LWT- Food Science and Technology, 2019, 103: 44-52. |
[58] | SANISO E, PRACHAYAWARAKON S, SWASDISEVI T, et al. Parboiled rice production without steaming by microwave-assisted hot air fluidized bed drying[J]. Food and Bioproducts Processing, 2020, 120: 8-20. |
[59] | XU X N, YAN W L, YANG Z K, et al. Effect of ultra-high pressure on quality characteristics of parboiled rice[J]. Journal of Cereal Science, 2019, 87: 117-123. |
[60] | SARANGAPANI C, DEVI Y, THIRUNDAS R, et al. Effect of low-pressure plasma on physico-chemical properties of parboiled rice[J]. LWT-Food Science and Technology, 2015, 63(1): 452-460. |
[61] | BUI L T T, COAD R A, STANLEY R A. Properties of rehydrated freeze dried rice as a function of processing treatments[J]. LWT- Food Science and Technology, 2018, 91: 143-150. |
[62] | DUTTA H, MAHANTA C L, SINGH V. Changes in the properties of rice varieties with different amylose content on dry heat parboiling[J]. Journal of Cereal Science, 2015, 65: 227-235. |
[63] | LANG G H, TIMM N D S, NEUTZLING H P, et al. Infrared radiation heating: A novel technique for developing quick-cooking rice[J]. LWT- Food Science and Technology, 2022, 154: 112758. |
[64] | TIAN Y Q, ZHAO J W, XIE Z J, et al. Effect of different pressure-soaking treatments on color, texture, morphology and retrogradation properties of cooked rice[J]. LWT-Food Science and Technology, 2014, 55(1): 368-373. |
[65] | 陈娟, 孙鉴坤, 方元平. 利用原子吸收光谱法和电镜能谱仪法分析重金属Pb、Cd在水稻颖果不同部位中的分配[J]. 生态科学, 2009, 28(4):348-351. |
[66] | 钱丽丽, 宋雪健, 宋春蕾, 等. 加工精度对大米矿质元素分布的影响[J]. 中国食品学报, 2019, 19(7):161-167. |
[67] | 王喆. SiPSY1与谷子籽粒类胡萝卜素积累关系的研究[D]. 太原: 山西农业大学, 2020. |
[1] | 徐树仁, 申红芳, 鄂文弟, 李春生, 谢驾阳, 徐春春, 王亚梁. 水稻大面积提产增效“整县制推进”的路径探索[J]. 中国稻米, 2025, 31(3): 1-4. |
[2] | 王志刚, 周佳燕, 周建霞, 陈惠哲, 张玉屏, 向境, 张义凯, 徐逸文, 黄颂迪, 王亚梁. 藕-稻轮作对土壤肥力及后茬水稻产量和品质的影响[J]. 中国稻米, 2025, 31(3): 100-102. |
[3] | 胡依君, 陈天晓, 龚俊, 杨长登, 周涵越, 梁燕. 常规早籼超级稻中组53的种植表现及关键高产栽培技术[J]. 中国稻米, 2025, 31(3): 108-110. |
[4] | 余贵龙, 赵海英, 李歌星, 刘祥臣, 谷孟轩, 丰大清, 胡杨, 张强, 彭廷, 刘亚丽, 扶定. 豫南再生稻研究进展与发展对策[J]. 中国稻米, 2025, 31(3): 14-20. |
[5] | 陈龙, 高志强, 金宇豪. 植物工厂条件下不同光通量密度对水稻生长发育的影响[J]. 中国稻米, 2025, 31(3): 30-36. |
[6] | 党洪阳, 庄海峰, 赵宇飞, 傅建舟, 季卫东. 秸秆炭基肥料对水稻土壤质量与养分利用及微生物群落的作用[J]. 中国稻米, 2025, 31(3): 37-45. |
[7] | 张苗, 麻艳威, 谢昶琰, 董青君, 陈川, 章安康. 不同有机物料与淤泥混配制作水稻育秧营养土的理化性状及对秧苗素质的影响[J]. 中国稻米, 2025, 31(3): 46-52. |
[8] | 梁青铎, 吴勇, 朱玉祥, 陈书融, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 朱练峰. 秸秆、紫云英还田替代部分化肥对稻田土壤健康的影响[J]. 中国稻米, 2025, 31(3): 53-58. |
[9] | 苏晓娜, 董伊婷, 李其营, 徐超. 外源喷施纳米锌对水稻耐旱性的影响及机理分析[J]. 中国稻米, 2025, 31(3): 59-63. |
[10] | 陈璟, 张迪, 林丽华, 赵子龙. HS-SPME-GC-MS技术揭示南粳9108米饭香气成分地域差异[J]. 中国稻米, 2025, 31(3): 81-86. |
[11] | 高洪儒, 杨传铭, 赵北平, 张喜娟, 肖明纲, 杨贤莉, 张擘, 王立志, 孙中义, 姜树坤. 黑龙江省五常优质稻区2008—2022年水稻育种趋势分析[J]. 中国稻米, 2025, 31(3): 87-94. |
[12] | 周宇尘, 李润景, 卢椰子, 储玉, 周宇杰, 蒋楠. 播期影响水稻白叶枯病发生和产量损失的品种间差异研究[J]. 中国稻米, 2025, 31(3): 95-99. |
[13] | 陈品, 徐春春, 纪龙, 陈中督, 方福平. 2024年我国水稻产业形势分析及2025年展望[J]. 中国稻米, 2025, 31(2): 1-5. |
[14] | 何雨欣, 于清涛, 谭瑗瑗, 舒庆尧, 刘乃新, 刘振. 中国水稻品种鉴定标准SSR标记的基因组特征研究[J]. 中国稻米, 2025, 31(2): 6-12. |
[15] | 黄淑梅, 杨红云, 孔杰, 吴正. 基于改进ShuffleNet V2的水稻磷素营养诊断方法[J]. 中国稻米, 2025, 31(2): 20-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||