中国稻米 ›› 2021, Vol. 27 ›› Issue (2): 15-20.DOI: 10.3969/j.issn.1006-8082.2021.02.004
张燕1(), 黄奇娜1, 邵国胜1,*(
), 王宏航2,*(
)
收稿日期:
2020-12-30
出版日期:
2021-03-20
发布日期:
2021-03-20
通讯作者:
邵国胜,王宏航
作者简介:
第一作者:zhangyan11@caas.cn
基金资助:
Yan ZHANG1(), Qina HUANG1, Guosheng SHAO1,*(
), Honghang WANG2,*(
)
Received:
2020-12-30
Online:
2021-03-20
Published:
2021-03-20
Contact:
Guosheng SHAO, Honghang WANG
About author:
1st author: zhangyan11@caas.cn
摘要:
水稻是我国主要的粮食作物之一,稻米安全生产正受到农田镉污染的严重威胁,减少水稻镉污染的农艺技术发展也备受关注。本文简要阐述了水分管理技术、合理施肥技术、叶面阻控技术、原位钝化修复技术、微生物修复技术、种植制度调整以及种植镉低积累品种等农艺调控技术控制水稻镉污染的研究与应用,并对存在的问题及今后的发展方向进行了探讨与展望,以期为更有效调控水稻镉污染提供理论依据和技术支撑。
中图分类号:
张燕, 黄奇娜, 邵国胜, 王宏航. 水稻镉污染相关农艺调控技术研究与应用进展[J]. 中国稻米, 2021, 27(2): 15-20.
Yan ZHANG, Qina HUANG, Guosheng SHAO, Honghang WANG. Advances in Research and Application of Agronomic Control Technologies Related to Cadmium Contamination in Rice[J]. China Rice, 2021, 27(2): 15-20.
[1] | ZHOU D, SONG X, ZHAO F J, et al.Soil environment and pollution remediation preface[J]. Pedosphere, 2017, 27(3): 387-388. |
[2] | LUO L, MA Y B, ZHANG S Z, et al.An inventory of trace element inputs to agricultural soils in china[J]. Journal of Environmental Management, 2009, 90(8): 2 524-2 530. |
[3] | 周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料,2020(2):89-98. |
[4] | WANI P A, KHAN M S, ZAIDI A.Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea[J]. Australian Journal of Experimental Agriculture, 2007, 47: 712-720. |
[5] | TRAN T A, POPOVA L P.Functions and toxicity of cadmium in plants: Recent advances and future prospects[J]. Turkish Journal of Botany, 2013, 37(1): 1-13. |
[6] | FERRARI P, ARCELLA D, HERAUD F, et al.Impact of refining the assessment of dietary exposure to cadmium in the european adult population[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2013, 30(4): 687-697. |
[7] | SONG Y, WANG Y B N, MAO W F, et al. Dietary cadmium exposure assessment among the chinese population[J]. Plos One, 2017, 12(5): e0177978. |
[8] | QIAN Y Z, CHEN C, ZHANG Q, et al.Concentrations of cadmium, lead, mercury and arsenic in chinese market milled rice and associated population health risk[J]. Food Control, 2010, 21(12): 1 757-1 763. |
[9] | CHEN H P, TANG Z, WANG P, et al.Geographical variations of cadmium and arsenic concentrations and arsenic speciation in chinese rice[J]. Environmental Pollution, 2018, 238: 482-490. |
[10] | 陈亮妹,马友华,王陈丝丝,等. 不同污染程度农田土壤重金属修复技术研究[J]. 中国农学通报,2016,32(32):94-99. |
[11] | 嵇东,孙红. 农田土壤重金属污染状况及修复技术研究[J]. 农业开发与装备,2018(12):74-75. |
[12] | 杨蕾. 我国土壤重金属污染的来源、现状、特点及治理技术[J]. 中国资源综合利用,2018,36(2):151-153. |
[13] | 张丽娜,宗良纲,付世景,等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J]. 安全与环境学报,2006(5):49-52. |
[14] | SUN L, CHEN S, CHAO L, et al.Effects of flooding on changes in eh, ph and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514-518. |
[15] | HUANG J H, WANG S L, LIN J H, et al.Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time[J]. Paddy and Water Environment, 2013, 11: 483-491. |
[16] | ZHENG S A, ZHANG M K.Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443. |
[17] | PAN Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261: 59-69. |
[18] | 杨小粉,吴勇俊,张玉盛,等. 水分管理对水稻镉吸收的影响[J]. 中国稻米,2019, 25(4):34-37. |
[19] | 刘昭兵,纪雄辉,彭华,等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报,2010,21(4):908-914. |
[20] | 杨定清,雷绍荣,李霞,等. 大田水分管理对控制稻米镉含量的技术研究[J]. 中国农学通报,2016,32(18):11-16. |
[21] | ARAO T, KAWASAKI A, BABA K, et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9 361-9 367. |
[22] | 田桃,廖柏寒,曾敏,等. 水分管理模式与土壤Eh值对水稻Cd迁移与累积的影响[J]. 环境科学,2017,38(1):343-351. |
[23] | ALPHA J M, CHEN J H, ZHANG G P.Effect of nitrogen fertilizer forms on growth, photosynthesis, and yield of rice under cadmium stress[J]. Journal of Plant Nutrition, 2009, 32(2): 306-317. |
[24] | 曹仁林,霍文瑞,何宗兰,等. 钙镁磷肥对土壤中镉形态转化与水稻吸镉的影响[J]. 重庆环境科学,1993,15(6):6-9. |
[25] | 刘昭兵,纪雄辉,彭华,等. 磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报,2012,23(6):1 585-1 590. |
[26] | JIAO Y, GRANT C A, BAILEY L D.Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat[J]. Journal of the Science of Food and Agriculture, 2010, 84(8): 777-785. |
[27] | GAO X P, FLATEN D N, TENUTA M, et al.Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization[J]. Plant and Soil, 2011, 338: 423-434. |
[28] | 衣纯真,傅桂平,张福锁. 不同钾肥对水稻镉吸收和运移的影响[J]. 中国农业大学学报,1996,1(3):65-70. |
[29] | XU Y L, TANG H M, LIU T X, et al.Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in southern China[J]. Environmental Science and Pollution Research, 2018, 25(20): 19 836-19 844. |
[30] | 张亚丽,沈其荣,姜洋. 有机肥料对镉污染土壤的改良效应[J]. 土壤学报,2001,38(2):212-218. |
[31] | 马铁铮,马友华,付欢欢,等. 生物有机肥和生物炭对Cd和Pb污染稻田土壤修复的研究[J]. 农业资源与环境学报,2015,32(1):14-19. |
[32] | 王世华,罗群胜,刘传平,等. 叶面施硅对水稻籽实重金属积累的抑制效应[J]. 生态环境,2007,16(3):875-878. |
[33] | 张宇鹏,谭笑潇,陈晓远,等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响[J]. 生态环境学报,2020,29(2):388-393. |
[34] | 邓思涵,龙九妹,陈聪颖,等. 水稻叶镉与米镉含量的相关性及叶面肥对镉的阻控研究[J]. 湖南农业科学,2019(2):24-28. |
[35] | 赵明柳,唐守寅,董海霞,等. 硅酸钠对重金属污染土壤性质和水稻吸收Cd、Pb、Zn的影响[J]. 农业环境科学学报,2016,35(9):1 653-1 659. |
[36] | 索炎炎,吴士文,朱骏杰,等. 叶面喷施锌肥对不同镉水平下水稻产量及元素含量的影响[J]. 浙江大学学报(农业与生命科学版),2012,38(4):449-458. |
[37] | 虞银江,廖海兵,陈文荣,等. 水稻吸收、运输锌及其籽粒富集锌的机制[J]. 中国水稻科学,2012,26(3):365-372. |
[38] | 管恩相,谭旭生,刘洪,等. 叶面施硒对稻米中镉等重金属含量影响的研究初报[J]. 种子科技,2013,31(5):60-63. |
[39] | BROWN S, CHRISTENSEN B, LOMBI E, et al.An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution, 2005, 138(1): 34-45. |
[40] | LOMBI E, HAMON R E, MCGRATH S P, et al.Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques[J]. Environmental Science & Technology, 2003, 37(5): 979-984. |
[41] | ZHU H H, CHEN C, XU C, et al.Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical china[J]. Environmental Pollution, 2016, 219: 99-106. |
[42] | YANG Y J, CHEN J M, HUAN Q N, et al.Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils[J]. Chemosphere, 2018, 193: 547-556. |
[43] | 张青,王煌平,孔庆波,等. 不同生育期施加超细磷矿粉对水稻吸收和转运Pb、Cd的影响[J].农业环境科学学报,2020,39(1):45-54. |
[44] | 方至萍,廖敏,张楠,等. 施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响[J]. 环境科学,2017,38(7):3 028-3 035. |
[45] | JUANG K W, HO P C, YU C H.Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants[J]. Environmental Science and Pollution Research, 2012, 19(5): 1 696-1 708. |
[46] | BASHIR S, RIZWAN M S, SALAM A, et al.Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: Extraction techniques and adsorption mechanism[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(5): 727-732. |
[47] | 王晶,张旭东,李彬,等. 腐殖酸对土壤中Cd形态的影响及利用研究[J]. 土壤通报,2002,33(3):185-187. |
[48] | 苏初连,邓爱妮,范琼,等. 腐殖酸类营养液改良镉污染稻田土壤和保障水稻安全生产[J]. 分子植物育种, |
[49] | 李坤陶. 生物修复技术及其应用[J]. 生物学教学,2007,32(1):4-6. |
[50] | SIRIPORNADULSIL S, SIRIPORNADULSIL W.Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety, 2013, 94: 94-103. |
[51] | LI F, ZHENG Y, TIAN J, et al.Cupriavidus sp. Strain Cd02-mediated ph increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109 655. |
[52] | SHI X Y, ZHOU G T, LIAO S J, et al.Immobilization of cadmium by immobilized Alishewanella sp. WH16-1 with alginate-lotus seed pods in pot experiments of cd-contaminated paddy soil[J]. Journal of Hazardous Materials, 2018, 357: 431-439. |
[53] | WANG C R, HUANG Y C, YANG X R, et al.Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126 603. |
[54] | PRAMANIK K, MITRA S, SARKAR A, et al.Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain enterobacter aerogenes MCC 3092[J]. Journal of Hazardous Materials, 2018, 351: 317-329. |
[55] | PRAMANIK K, MITRA S, SARKAR A, et al.Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium[J]. Environmental Science and Pollution Research, 2017, 24(31): 24 419-24 437. |
[56] | 尹艺,赵颖,马莲菊,等. 碱蓬内生真菌对镉胁迫水稻幼苗生长及生理生化指标的影响[J]. 贵州农业科学,2014(3):23-26. |
[57] | 刘江苇,刘颖,徐婷,等. 水稻内生菌研究进展及展望[J]. 生命科学研究,. |
[58] | 沈丽波,吴龙华,维娜,等. 伴矿景天-水稻轮作及磷修复剂对水稻锌镉吸收的影响[J]. 应用生态学报,2010,21(11): 2 952-2 958. |
[59] | 于玲玲,朱俊艳,黄青青,等. 油菜-水稻轮作对作物吸收累积镉的影响[J]. 环境科学与技术,2014,37(1):1-6. |
[60] | 谢运河,纪雄辉,彭华,等. 镉污染稻田改制玉米的农产品质量安全研究[J]. 农业现代化研究,2014,35(5):658-662. |
[61] | WANG J, LU X, ZHANG J, et al.Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil[J]. Journal of Hazardous Materials, 2020, 394: 122 505. |
[62] | KANG Z M, ZHANG W Y, QIN J H, et al.Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110 102. |
[63] | YANG X, ZHANG W Y, QIN J H, et al.Role of passivators for Cd alleviation in rice-water spinach intercropping system[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111 321. |
[64] | 徐卫红,黄河,王爱华,等. 根系分泌物对土壤重金属活化及其机理研究进展[J]. 生态环境,2006,15(1):184-189. |
[65] | DUAN G, SHAO G, TANG Z, et al.Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9. |
[66] | 王天抗,李懿星,宋书锋,等. 水稻籽粒镉低积累资源挖掘及其新材料创制[J]. 杂交水稻,2020,doi:10.16267/j.cnki.1005-3956.20200904.287. |
[67] | SUN L, XU XX, JIANG YR, et al.Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontiers in Plant Science, 2016, 7: 1 407. |
[68] | SASAKI A, YAMAJI N, YOKOSHO K, et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2 155-2 167. |
[69] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytolologist, 2011, 189(1): 190-199. |
[70] | URAGUCHI S, KAMIYA T, CLEMENS S, et al.Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
[71] | ASHIKARI M, SAKAKIBARA H, LIN S Y, et al.Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5 735): 741-745. |
[72] | XUE W Y, XING Y Z, WENG X Y, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[73] | LI D Y, HUANG Z Y, SONG S H, et al.Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): E6026-E6035. |
[74] | XU X Y, MCGRATHG S P, MEHARG A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J]. Environmental Science & Technology, 2008, 42(15): 5 574-5 579. |
[75] | LI R Y, STROUD J L, MA J F, et al.Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science & Technology, 2009, 43(10): 3 778-3 783. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||