中国稻米 ›› 2021, Vol. 27 ›› Issue (2): 21-27.DOI: 10.3969/j.issn.1006-8082.2021.02.005
李潜龙1, 王慧1,2, 方玉1,2, 张从合1,2,*()
收稿日期:
2020-12-30
出版日期:
2021-03-20
发布日期:
2021-03-20
通讯作者:
张从合
基金资助:
Qianlong LI1, Hui WANG1,2, Yu FANG1,2, Conghe ZHANG1,2,*()
Received:
2020-12-30
Online:
2021-03-20
Published:
2021-03-20
Contact:
Conghe ZHANG
摘要:
水稻是我国的主要粮食作物,在人口快速增长和自然环境不断恶化的今天,传统的育种技术已经很难满足当前水稻育种的需求,分子育种技术逐渐成为育种工作者解决当前困境的主要方法。经过几十年的努力,中国科学家不仅在水稻遗传学和功能基因组学领域取得了令世界瞩目的成就,还在水稻分子育种方面为提高粮食产量、营养质量和环境效益方面做出了巨大努力。本文主要综述了我国科学家在水稻分子遗传和分子育种方面取得的成就并进行讨论。
中图分类号:
李潜龙, 王慧, 方玉, 张从合. 我国水稻重要农艺性状分子遗传研究进展及在育种上的应用[J]. 中国稻米, 2021, 27(2): 21-27.
Qianlong LI, Hui WANG, Yu FANG, Conghe ZHANG. Research Progress in Molecular Genetics of Important Agronomic Traits and Breeding Utilization in Rice[J]. China Rice, 2021, 27(2): 21-27.
[1] | 袁隆平. 杂交水稻的育种战略设想[J]. 杂交水稻,1987(1):1-3. |
[2] | 陈奕伊. 水稻OsGS3、OsGW2、OsGn1α定向聚合突变体创制及分析[D]. 成都:电子科技大学,2018. |
[3] | 郭韬,余泓,邱杰,等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学:生命科学,2019,49(10):1 185-1 212. |
[4] | LI X, QIAN Q, FU Z, et al.Control of tillering in rice[J]. Nature, 2003, 422(6 932): 618-621. |
[5] | MIYOSHI K, AHN B O, KAWAKATSU T, et al.PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450[J]. Proceedings of the National Academy of Sciences, 2004, 101(3): 875-880. |
[6] | FAN C, XING Y, MAO H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[7] | SONG X J, HUANG W, SHI M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[8] | WANG Y, XIONG G, HU J, et al.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[9] | WANG S, LI S, LIU Q, et al.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[10] | WAN X, WENG J, ZHAI H, et al.Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 2008, 179(4): 2 239-2 252. |
[11] | WANG S, WU K, YUAN Q, et al.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[12] | LI Y, FAN C, XING Y, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[13] | HU Z, LU S J, WANG M J, et al.A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[14] | JIAO Y, WANG Y, XUE D, et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. |
[15] | WANG J, ZHOU L, SHI H, et al.A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361: 1 026-1 028. |
[16] | WANG Z Y, WU Z L, XING Y Y, et al.Nucleotide sequence of rice waxy gene[J]. Nucleic Acids Research, 1990, 18(19): 5 898-5 899. |
[17] | LI Y, FAN C, XING Y, et al.Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[18] | PENG B, KONG H, LI Y, et al.OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5: 4 847-4 858. |
[19] | YANG Y, GUO M, SUN S, et al.Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1 949-1 960. |
[20] | CHEN S H, YANG Y, SHI W W, et al.Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7):1 850-1 861. |
[21] | PENG C, WANG Y H, LIU F, et al.FLOURY ENDOSPERM 6 encodes a CBM 48 domain‐containing protein involved in compound granule formation and starch synthesis in rice endosperm[J]. The Plant Journal, 2014, 77(6): 917-930. |
[22] | WANG E, WANG J, ZHU X, et al.Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1 370-1 374. |
[23] | SUN X, CAO Y, YANG Z, et al.Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. The Plant Journal, 2004, 37(4): 517-527. |
[24] | LIU Y Y, CAO Y L, ZHANG Q L, et al.A cytosolic triosephosphate isomerase is a key component in Xa3/Xa26-mediated resistance[J]. Plant Physiology, 2018, 178(2): 923-925. |
[25] | WANG Q, LIU Y, HE J, ET AL.STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus[J]. Nature Communications, 2014, 5:4 768-4 775. |
[26] | YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, et al.Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1 663-1 668. |
[27] | 闫成业,刘艳,牟同敏. 分子标记辅助选择聚合Xa7、Xa21和cry1C*基因改良杂交水稻金优207的白叶枯病和螟虫抗性[J]. 杂交水稻,2013,28(5):55-62. |
[28] | IYER A S, MCCOUCH S R.The rice bacterial blight resistance gene Xa5 encodes a novel form of disease resistance[J]. Molecular Plant-Microbe Interactions, 2005, 17(12): 1 348-1 354. |
[29] | TIAN D, WANG J, ZENG X, et al.The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum[J]. The Plant Cell, 2014, 26(1): 497-515. |
[30] | CHU Z, FU B, YANG H, et al.Targeting Xa13, a recessive gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics, 2006, 112(3): 455-461. |
[31] | SONG W Y, WANG G L, CHEN L L, et al.A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J].Science, 1995, 270(5243): 1 804-1 806. |
[32] | ZHOU Y L, UZOKWE V N E, ZHANG C H, et al. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon)[J]. Crop Protection, 2011, 30(6): 637-644. |
[33] | 杨红. 水稻抗稻瘟病基因rbr2的分离和抗白叶枯病基因Xa25(t)的精细定位[D]. 武汉:华中农业大学,2008. |
[34] | GU K, YANG B, TIAN D, et al.R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005, 435(7045): 1 122-1 125. |
[35] | HUTIN M, SABOT F, GHESQUIERE A, et al.A knowledge-based molecular screen uncovers a broad-spectrum\r, OsSWEET14\r, resistance allele to bacterial blight from wild rice[J]. The Plant Journal, 2015, 84(4): 694-703. |
[36] | DENG Y, ZHAI K, XIE Z, et al.Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355: 962-965. |
[37] | WANG J, LIU X, ZHANG A, et al.A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice[J]. Cell Research, 2019, 29(10): 820-831 |
[38] | DU B, ZHANG W, LIU B, et al.Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences of the United States America, 2009, 106(52): 22 163-22 168. |
[39] | LIU Y Q, WU H, CHEN H,et al.A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature Biotechnology, 2015, 33(3): 301-305. |
[40] | 邹拓,耿雷跃,张薇,等. 水稻抗病虫基因挖掘及聚合育种研究进展[J]. 河北农业科学,2018,22(5):52-72. |
[41] | LI X M, CHAO D Y, WU Y, et al.Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[42] | MA Y, DAI X, XU Y, et al.COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(160): 1 209-1 221. |
[43] | WANG D, QIN B X, LI X, et al. Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice[J]. PLOS Genetics, 2016, 12(2): 1 005 844-1 005 866. |
[44] | MAO D, XIN Y, TAN Y, et al.Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate[J]. Proceedings of the National Academy of Sciences, 2019, 116(9): 3494-3501. |
[45] | REN Z H, GAO J P, LI L G, et al.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1 141-1 146. |
[46] | ZHOU Y, LIU C, TANG D, et al.The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates catC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice[J]. The Plant Cell, 2018, 30(5): 1 100-1 118. |
[47] | LUO J S, HUANG J, ZENG D L, et al.A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9: 645-654. |
[48] | YAN H, XU W, XIE J, et al.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10: 2 562-2 574. |
[49] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
[50] | ODA K, OTANI M, URAGUCHI S, et al.Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Bioscience Biotechnology and Biochemistry, 2011, 75(6): 1 211-1 213. |
[51] | SHIMO H, ISHIMARU Y, AN G, et al.Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5 727-5 734. |
[52] | LAN H X, WANG Z F, WANG Q H, et al.Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2): 1 201-1 210. |
[53] | 朱义旺,林雅容,陈亮. 我国水稻分子育种研究进展[J]. 厦门大学学报(自然科学版),2016,55(5):671. |
[54] | LI Y,TAO H,ZHAO X,et al.Molecular improvement of grain weight and yield in rice by using GW6 gene[J]. Rice Science, 2014, 21(3): 127-132. |
[55] | 王岩,付新民,高冠军,等. 分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J]. 分子植物育种,2009,7(4):31-35. |
[56] | 庄杰云,朱玉君,屠国庆,等. 多基因聚合育成优质高产杂交稻新组合中优16[J]. 杂交水稻,2010,25(5):12-14. |
[57] | LIU Q Q, LI Q F, CAI X L, et al.Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice[J]. Crop Science, 2006, 46: 2 354-2 360. |
[58] | 曹立勇,占小登,庄杰云,等. 利用分子标记辅助育种技术育成优质高产抗病杂交稻国稻1号[J]. 杂交水稻,2005,20(3):16-18. |
[59] | 邓其明,周宇爝,蒋昭雪,等. 白叶枯病抗性基因 Xa21、Xa4和 Xa23的聚合及其效应分析[J]. 作物学报,2005,31(9):1 241-1 246. |
[60] | 刘驰,韦敏益,秦钢,等. 利用MAS技术培育水稻多抗、优质强恢复系桂恢663[J]. 西南农业学报,2019,32(2):7-13. |
[61] | 赖怡帆,孙君玥,张旭辉,等. 分子标记辅助选择Pigm基因改良湘晚籼13号的稻瘟病抗性[J]. 湖南农业大学学报(自然科学版),2019,45(2):3-7. |
[62] | 朱旭东,陈红旗,陈宗祥,等. 利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性[J]. 中国水稻科学,2008,22(1):23-27. |
[63] | 倪大虎,易成新,李莉,等. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报,2008,34(1):100-105. |
[64] | 朱永生,白建林,谢鸿光,等. 聚合白背飞虱和褐飞虱抗性基因创制杂交水稻恢复系[J]. 中国水稻科学,2019,33(5):421-428. |
[65] | 徐鹏,叶胜拓,牟同敏. 分子标记辅助选择改良水稻恢复系R1813稻瘟病、白叶枯病和褐飞虱抗性研究[J]. 杂交水稻,2018,34(1):62-69. |
[66] | 王才林,张亚东,赵凌,等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米,2019,25(1):1-6. |
[67] | 郭龙彪,薛大伟,王慧中,等. 转基因与常规杂交相结合改良水稻耐盐性[J]. 中国水稻科学,2006,20(2):141-146. |
[68] | 王月华,何虎,潘晓华.我国水稻育种技术发展历程回顾[J]. 江西农业学报,2012,24(2):26-28. |
[69] | 龙起樟,黄永兰,唐秀英,等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学,2019, 33(5):407-420. |
[70] | 胡昌泉,徐军望,苏军,等. 农杆菌介导法获得转可溶性淀粉合成酶基因籼稻[J]. 福建农业学报,2003,18(2):65-68. |
[71] | 胡燕. 利用农杆菌介导法将抗稻瘟病基因Pi-d2导入杂交稻骨干亲本蜀恢527的研究[D]. 成都:四川农业大学,2008. |
[72] | 向殿军,满丽莉,殷奎德,等. 拟南芥ICE1基因转化水稻的进一步研究[J]. 生物技术通报,2008(6):90-93. |
[73] | 张妍,王瑛,梁玉玲,等. 转LEA3 基因水稻的抗性分析[J]. 河北农业大学学报,2005,28(5):33-37. |
[74] | ZHU Q L, YU S Z, ZENG D C, et al.Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system[J]. Molecular Plant, 2017, 10: 918-929. |
[75] | WANG C, LIU Q, SHEN Y, et al.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[76] | LIU L, KUANG Y, YAN F, et al.Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2[J]. Plant Biotechnology Journal, 2020, 19(1): 1-3. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[11] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[12] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[13] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[14] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
[15] | 严如玉, 甘国渝, 赵希梅, 殷大聪, 李燕丽, 金慧芳, 朱海, 李继福. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||