
中国稻米 ›› 2025, Vol. 31 ›› Issue (6): 33-45.DOI: 10.3969/j.issn.1006-8082.2025.06.007
文萱1,2(
), 刘腾飞1, 胡文彬1, 周政1, 刘烨1, 贺记外2, 张海清2,*(
), 赵正洪1,*(
)
收稿日期:2025-05-01
出版日期:2025-11-20
发布日期:2025-11-07
通讯作者:
*hunanhongli@aliyun.com;作者简介:第一作者:1184820058@qq.com
基金资助:
WEN Xuan1,2(
), LIU Tengfei1, HU Wenbin1, ZHOU Zheng1, LIU Ye1, HE Jiwai2, ZHANG Haiqing2,*(
), ZHAO Zhenghong1,*(
)
Received:2025-05-01
Published:2025-11-20
Online:2025-11-07
About author:1st author: 1184820058@qq.com
摘要:
锌(Zn)、铁(Fe)、锰(Mn)、铜(Cu)作为植物体内不可或缺的金属元素,在整个植物生命周期中扮演着广泛且至关重要的角色。植物在摄取这些必需金属元素的同时,也可能吸收一些对植物有害的重金属元素,如镉(Cd)。Cd常利用Fe、Zn、Mn等必需元素的转运途径侵入植物体内,且易于在植物体内迁移,通过占据必需元素在蛋白质中的功能位点而显现其毒性,因此被视为研究非必需元素在植物体内吸收与转运模式的代表性元素。研究在Cd含量超标条件下,水稻对必需金属元素(如Zn、Fe)的吸收与转运分子机制,对于培育出既富含Zn、Fe等高营养元素又低Cd积累的水稻品种具有重要意义。本文在综述必需和非必需金属元素对水稻生长发育影响的基础上,综述了水稻对金属元素吸收和转运的机理(包括转运蛋白),整理总结了其中起关键作用的相关基因,旨在为克隆与利用这些基因提供一定参考。
中图分类号:
文萱, 刘腾飞, 胡文彬, 周政, 刘烨, 贺记外, 张海清, 赵正洪. 水稻中金属元素转运机理与相关转运蛋白研究进展[J]. 中国稻米, 2025, 31(6): 33-45.
WEN Xuan, LIU Tengfei, HU Wenbin, ZHOU Zheng, LIU Ye, HE Jiwai, ZHANG Haiqing, ZHAO Zhenghong. Progress on the Mechanism of Metal Element Transport and Related Transport Proteins in Rice[J]. China Rice, 2025, 31(6): 33-45.
| [1] | KAUR R, DAS S, BANSAL S, et al. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms[J]. Physiologia Plantarum, 2021, 173(1): 430-448. |
| [2] | WONG C K E, COBBETT C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1): 71-78. |
| [3] | TANG L, MAO B, LI Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7: 14 438. |
| [4] | CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67(1): 489-512. |
| [5] | JOZEFCZAK M, KEUNEN E, SCHAT H, et al. Differential response of Arabidopsis leaves and roots to cadmium: Glutathione-related chelating capacity vs antioxidant capacity[J]. Plant Physiology and Biochemistry, 2014, 83: 1-9. |
| [6] | HUYBRECHTS M, HENDRIX S, KYNDT T, et al. Short-term effects of cadmium on leaf growth and nutrient transport in rice plants[J]. Plant Science, 2021, 313: 111 054. |
| [7] | AIQING Z, ZHANG L, NING P, et al. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(28): 7 917-7 928. |
| [8] | KANDIL E E, EL-BANNA A A A, TABL D M M, et al. Zinc nutrition responses to agronomic and yield traits, kernel quality, and pollen viability in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2022, 13: 791 066. |
| [9] | WANG S J, FANG R T, YUAN X J, et al. Foliar spraying of ZnO nanoparticles enhanced the yield, quality, and zinc enrichment of rice grains[J]. Foods, 2023, 12(19): 3 677. |
| [10] | WAHANE M R, BEDSE T J, JONDHALE D G, et al. Significance of zinc fortified briquettes on soil properties, zinc concentration, uptake and economics of rice[J]. Communications in Soil Science and Plant Analysis, 2023, 54(6): 855-863. |
| [11] | GAO S, ZHOU M, ZHOU Q Y, et al. Effects of exogenous zinc (ZnSO4·7H2O) on photosynthetic characteristics and grain quality of hybrid rice[J]. Plant Physiology and Biochemistry, 2023, 205: 108 049. |
| [12] | PONTE L R, FARIAS J G, DEL FRARI BK, et al. OsYSL13 transporter may play a role in Mn homeostasis in rice (Oryza sativa L.)[J]. Theoretical and Experimental Plant Physiology, 2023, 35(3): 263-274. |
| [13] | BRIAT J F, DUBOS C, GAYMARD F. Iron nutrition, biomass production, and plant product quality[J]. Trends in Plant Science, 2015, 20(1): 33-40. |
| [14] | MARSCHNER H, ROMHELD V, KISSEL M. Different strategies in higher plants in mobilization and uptake of iron[J]. Journal of Plant Nutrition, 1986, 9(3): 695-713. |
| [15] | MORI S. Iron acquisition by plants[J]. Current Opinion in Plant Biology, 1999, 2(3): 250-253. |
| [16] | LI Q, CHEN L, YANG A. The molecular mechanisms underlying iron deficiency responses in rice[J]. International Journal of Molecular Sciences, 2020, 21(1): 43. |
| [17] | SANTI S, SCHMIDT W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots[J]. New Phytologist, 2009, 183(4): 1 072-1 084. |
| [18] | KAWAKAMI Y, BHULLAR N K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice[J]. Journal of Integrative Plant Biology, 2018, 60(12): 1 181-1 198. |
| [19] | RAJONANDRAINA T, RAKOTOSON T, WISSUWA M, et al. Mechanisms of genotypic differences in tolerance of iron toxicity in field-grown rice[J]. Field Crops Research, 2023, 298: 108 953. |
| [20] | XU E D, ZOU Y, YANG G, et al. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice[J]. Plant Science, 2024, 339: 111 935. |
| [21] | YU E, YAMAJI N, MAO C Z, et al. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice[J]. Journal of Experimental Botany, 2021, 72(20): 7 219-7 228. |
| [22] | TSUNEMITSU Y, YAMAJI N, MA J F, et al. Rice reduces Mn uptake in response to Mn stress[J]. Plant Signaling & Behavior, 2018, 13(1): e1422466. |
| [23] | MIR A R, PICHTEL J, HAYAT S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil[J]. BioMetals, 2021, 34(4): 737-759. |
| [24] | YUAN M, CHU Z, LI X H, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. The Plant Cell, 2010, 22(9): 3 164-3 176. |
| [25] | ZHANG C, LU W H, YANG Y, et al. OsYSL16 is required for preferential Cu distribution to floral organs in rice[J]. Plant and Cell Physiology, 2018, 59(10): 2 039-2 051. |
| [26] | TAN J J, HE S B, YAN S S, et al. Exogenous EDDS modifies copper-induced various toxic responses in rice[J]. Protoplasma, 2014, 251(5): 1 213-1 221. |
| [27] | BURKHEAD J L, REYNOLDS K A, ABDEL-GHANY S E, et al. Copper homeostasis[J]. New Phytologist, 2009, 182(4): 799-816. |
| [28] | ZHANG H X, SONG Y F, WANG F Y, et al. Identification of Cu-binding proteins in embryos of germinating rice in response to Cu toxicity[J]. Acta Physiologiae Plantarum, 2018, 40: 1-8. |
| [29] | LI J T, BAKER A J, YE Z H, et al. Phytoextraction of Cd-contaminated soils: Current status and future challenges[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(20): 2 113-2 152. |
| [30] | CHEN J G, ZOU W L, MENG L J, et al. Advances in the uptake and transport mechanisms and QTLs mapping of cadmium in rice[J]. International Journal of Molecular Sciences, 2019, 20(14): 3 417. |
| [31] | JING H N, YANG W T, CHEN Y L, et al. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety[J]. Science of The Total Environment, 2023, 897: 165 369. |
| [32] | HUANG L, LI W C, TAM N F Y, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.)[J]. Journal of Environmental Sciences, 2019, 75(1): 296-306. |
| [33] | URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20 959-20 964. |
| [34] | WANG C Q, THIELEMANN L, DIPPOLD M A, et al. Reductive dissolution of iron phosphate modifies rice root morphology in phosphorus-deficient paddy soils[J]. Soil Biology and Biochemistry, 2023, 177: 108 904. |
| [35] | ZHANG J L, ZHU Y C, YU L J, et al. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.)[J]. Cells, 2022, 11(3): 569. |
| [36] | TAN S, HAN R, LI P, et al. Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds[J]. Transgenic Research, 2015, 24(1): 109-122. |
| [37] | FENG K X, LI J X, YANG Y C, et al. Cadmium absorption in various genotypes of rice under cadmium stress[J]. International Journal of Molecular Sciences, 2023, 24(9): 8 019. |
| [38] | LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019, 19(1): 283. |
| [39] | BASHIR K, ISHIMARU Y, NISHIZAWA N K. Molecular mechanisms of zinc uptake and translocation in rice[J]. Plant and Soil, 2012, 361(1): 189-201. |
| [40] | SASAKI A, YAMAJI N, MITANI UENO N, et al. A node‐localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374-384. |
| [41] | LI M Z, HU D W, LIU X Q, et al. The OsZIP2 transporter is involved in root-to-shoot translocation and intervascular transfer of cadmium in rice[J]. Plant, Cell and Environment, 2024, 47(10): 3 865-3 881. |
| [42] | LEE S, KIM S A, LEE J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558. |
| [43] | RAMESH S A, SHIN R, EIDE D J, et al. Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiology, 2003, 133(1): 126-134. |
| [44] | LEE S, JEONG H J, KIM S A, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4): 507-517. |
| [45] | YANG M, LI Y, LIU Z, et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice[J]. The Plant Journal, 2020, 103(5): 1 695-1 709. |
| [46] | LI J J, LIU Y Y, KONG L H, et al. An intracellular transporter OsNRAMP7 is required for distribution and accumulation of iron into rice grains[J]. Plant Science, 2023, 336: 111 831. |
| [47] | SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2 155-2 167. |
| [48] | CHANG J D, HUANG S, YAMAJI N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]. Plant, Cell and Environment, 2020, 43(10): 2 476-2 491. |
| [49] | HUNAG Q N, WU Y L, SHAO G S. Root aeration promotes cadmium accumulation in rice by regulating iron uptake-associated system[J]. Rice Science, 2021, 28(5): 511-520. |
| [50] | XIA J X, YAMAJI N, KASAI T, et al. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43): 18 381-18 385. |
| [51] | GAO H L, XIE W X, YANG C H, et al. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency[J]. The New Phytologist, 2018, 217(1): 179-193. |
| [52] | LI Y, LI J J, YU Y H, et al. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice[J]. Journal of Experimental Botany, 2021, 72(13): 4 839-4 852. |
| [53] | CONNOLLY E L, FETT J P, GUERINOT M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. The Plant Cell, 2002, 14(6): 1 347-1 357. |
| [54] | LEE S C, AN G H. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell and Environment, 2009, 32(4): 408-416. |
| [55] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
| [56] | LIU X S, LI H, FENG S J, et al. A transposable element-derived siRNAs involve DNA hypermethylation at the promoter of OsGSTZ4 for cadmium tolerance in rice[J]. Gene, 2024, 892: 147 900. |
| [57] | HU S, YU Y, CHEN Q, et al. OsMYB45 plays an important role in rice resistance to cadmium stress[J]. Plant Science, 2017, 264: 1-8. |
| [58] | YUE E K, RONG F X, LIU Z, et al. Cadmium induced a non-coding RNA microRNA535 mediates Cd accumulation in rice[J]. Journal of Environmental Sciences, 2023, 130: 149-162. |
| [59] | SHI Y, JIANG W J, LI M Y, et al. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.)[J]. International Journal of Biological Macromolecules, 2023, 245: 125 607. |
| [60] | ZHAO Y N, WANG M Q, LI C, et al. The metallochaperone OsHIPP56 gene is required for cadmium detoxification in rice crops[J]. Environmental and Experimental Botany, 2022, 193: 104 680. |
| [61] | XIONG S, KONG X H, CHEN G Q, et al. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice[J]. Plant, Cell and Environment, 2023, 46(6): 1 946-1 961. |
| [62] | HUANG X Y, DENG F L, YAMAJI N, et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain[J]. Nature Communications, 2016, 7: 12 138. |
| [63] | YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939. |
| [64] | XU E, WU M, LIU Y, et al. The Golgi-localized transporter OsPML3 is involved in manganese homeostasis and complex N-glycan synthesis in rice[J]. Journal of Experimental Botany, 2023, 74(6): 1 853-1 872. |
| [65] | INOUE H, KOBAYASHI T, NOZOYE T, et al. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings[J]. Journal of Biological Chemistry, 2009, 284(6): 3 470-3 479. |
| [66] | LEE S, CHIECKO J C, KIM S A, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiology, 2009, 150(2): 786-800. |
| [67] | YAMAJI N, MA J F. The node, a hub for mineral nutrient distribution in graminaceous plants[J]. Trends in Plant Science, 2014, 19(9): 556-563. |
| [68] | DENG F L, YAMAJI N, XIA J X, et al. A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice[J]. Plant Physiology, 2013, 163(3): 1 353-1 362. |
| [69] | ISHIMARU Y, SUZUKI M, KOBAYASHI T, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice[J]. Journal of Experimental Botany, 2005, 56(422): 3 207-3 214. |
| [70] | ISHIMARU Y, MASUDA H, SUZUKI M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58(11): 2 909-2 915. |
| [71] | TAN L T, ZHU Y X, FAN T, et al. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118. |
| [72] | TANG L, DONG J Y, TAN L T, et al. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice[J]. Rice, 2021, 14(1): 89. |
| [73] | SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224. |
| [74] | SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6 013-6 021. |
| [75] | NAVARRO B B, DEL FRARI B K, DIAS P V D C, et al. The copper economy response is partially conserved in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2021, 158: 113-124. |
| [76] | ZHOU W L, LI C, ZHU Y J, et al. Rice heavy metal P-type ATPase OsHMA6 is likely a copper efflux protein[J]. Rice Science, 2020, 27(2): 143-151. |
| [77] | LEE S, KIM Y, LEE Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007, 145(3): 831-842. |
| [78] | CAO H W, LI C, ZHANG B Q, et al. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity[J]. Agronomy, 2022, 12(2): 488. |
| [79] | SHI Y, JIANG N, WANG M T, et al. OsHIPP17 is involved in regulating the tolerance of rice to copper stress[J]. Frontiers in Plant Science, 2023, 14: 1 183 445. |
| [80] | CHEN G Q, XIONG S. OsHIPP24 is a copper metallochaperone which affects rice growth[J]. Journal of Plant Biology, 2021, 64(2): 145-153. |
| [81] | WANG W J, YE J, MA Y R, et al. OsIRO3 plays an essential role in iron deficiency responses and regulates iron homeostasis in rice[J]. Plants, 2020, 9(9): 1 095. |
| [82] | LI C Y, LI Y, XU P, et al. OsIRO3 negatively regulates Fe homeostasis by repressing the expression of OsIRO2[J]. The Plant Journal, 2022, 111(4): 966-978. |
| [83] | TAKAHASHI R, ISHIMARU Y, NAKANISHI H, et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11): 1 813-1 816. |
| [84] | CHU Z H, YUAN M, YAO J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. Genes and Development, 2006, 20(10): 1 250-1 255. |
| [85] | ZHANG Y Y, CHEN K, ZHAO F J, et al. OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution[J]. Plant Physiology, 2018, 178(1): 329-344. |
| [86] | SEREGIN I V, KOZHEVNIKOVA A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium[J]. Russian Journal of Plant Physiology, 2008, 55(1): 1-22. |
| [87] | YAMAJI N, MA J F. Node-controlled allocation of mineral elements in Poaceae[J]. Current Opinion in Plant Biology, 2017, 39: 18-24. |
| [88] | XIA R Z, ZHOU J, CUI H B, et al. Nodes play a major role in cadmium (Cd) storage and redistribution in low-Cd-accumulating rice (Oryza sativa L.) cultivars[J]. Science of The Total Environment, 2023, 859: 160 436. |
| [89] | YAMAJI N, SASAKI A, XIA J X, et al. A node-based switch for preferential distribution of manganese in rice[J]. Nature Communications, 2013, 4: 2 442. |
| [90] | HAO X, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. |
| [91] | URAGUCHI S, KAMIYA T, CLEMENS S, et al. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
| [92] | SCHRECK E, FOUCAULT Y, SARRET G, et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead[J]. Science of the Total Environment, 2012, (427/428): 253-262. |
| [93] | CAO X Y, TAN C Y, WU L H, et al. Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice[J]. Science of the Total Environment, 2020, 700: 134 513. |
| [94] | FENG W L, GUO Z H, XIAO X Y, et al. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 180: 160-167. |
| [95] | XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. |
| [96] | XU Z Q, ZHU Z, ZHAO Y H, et al. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions[J]. Environmental Pollution, 2022, 306: 119 390. |
| [97] | SCHULZ A, THOMPSON G A. Phloem structure and function[R]. American Cancer Society, 2009. doi:10.1002/9780470015902.A0001290.PUB2. |
| [98] | COLLIS H L, OWEN M R, BAND L R. Long-distance hormone transport via the phloem[J]. Journal of Theoretical Biology, 2023, 562: 111 415. |
| [99] | OPARKA K J, CRUZ S S. THE GREAT ESCAPE: Phloem transport and unloading of macromolecules[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 323-347. |
| [100] | TIAN S Q, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120 853. |
| [101] | CAO H W, ZHAO Y N, LIU X S, et al. A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops[J]. Environmental Pollution, 2022, 311: 120 058. |
| [102] | INOUE H, HIGUCHI K, TAKAHASHI M, et al. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. The Plant Journal, 2003, 36(3): 366-381. |
| [103] | AUNG M S, MASUDA H, NOZOYE T, et al. Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice[J]. Frontiers in Plant Science, 2019, 10: 660. |
| [104] | KOIKE S, INOUE H, MIZUNO D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. The Plant Journal, 2004, 39(3): 415-424. |
| [105] | ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese: OsYSL2 is required for Fe and Mn transport to the endosperm[J]. The Plant Journal, 2010, 62(3): 379-390. |
| [106] | AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of Lamina joints[J]. Plant Molecular Biology, 2009, 70(6): 681-692. |
| [107] | SASAKI A, YAMAJI N, XIA J X, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiology, 2011, 157(4): 1 832-1 840. |
| [108] | SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant Molecular Biology, 2017, 95(4): 375-387. |
| [109] | ZHANG C, SHINWARI K I, LUO L, et al. OsYSL13 is involved in iron distribution in rice[J]. International Journal of Molecular Sciences, 2018, 19(11): 3 537. |
| [110] | ZHENG L Q, YAMAJI N, YOKOSHO K, et al. YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice[J]. The Plant Cell, 2012, 24(9): 3 767-3 782. |
| [111] | ZOU Y, XU E D, FAN Y, et al. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice[J]. Plant Physiology and Biochemistry, 2023, 203: 108054. |
| [112] | YUAN M, LI X H, XIAO J H, et al. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice[J]. BMC Plant Biology, 2011, 11(1): 69. |
| [113] | 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7 929. |
| [114] | 裴峰, 王广达, 高鹏, 等. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1):16-28. |
| [115] | XU J, XIONG W T, CAO B B, et al. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice[J]. Planta, 2013, 238(4): 643-655. |
| [116] | XIONG W T, WANG P, YAN T Z, et al. The rice “fruit-weight 2.2-like” gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots[J]. Planta, 2018, 247(5): 1 247-1 260. |
| [117] | GAO Q S, LIU L, ZHOU H Y, et al. Mutation in OsFWL7 affects cadmium and micronutrient metal accumulation in rice[J]. International Journal of Molecular Sciences, 2021, 22(22): 12 583. |
| [118] | WANG F J, TAN H F, HAN J H, et al. A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice[J]. Environmental Sciences Europe, 2019, 31(1): 1-13. |
| [119] | 程通, 王小兵, 董君能, 等. 原位钝化对稻田镉污染土壤修复效果及土壤酶活性的影响[J]. 中国稻米, 2023, 29(2):28-33. |
| [120] | 许肖博, 安鹏虎, 郭天骄, 等. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35(5):415-426. |
| [121] | TU M, DU C H, YU B J, et al. Current advances in the molecular regulation of abiotic stress tolerance in sorghum via transcriptomic, proteomic, and metabolomic approaches[J]. Frontiers in Plant Science, 2023, 14: 1 147 328. |
| [122] | GHORI N H, GHORI T, HAYAT M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1 807-1 828. |
| [123] | ROY S, MATHUR P, CHAKRABORTY A P, et al. Plant Stress: Challenges and Management in the New Decade[M]. Berlin, Germany: Springer International Publishing, 2022. |
| [124] | HUANG S, YAMAJI N, SAKURAI G, et al. A pericycle-localized silicon transporter for efficient xylem loading in rice[J]. The New Phytologist, 2022, 234(1): 197-208. |
| [125] | BISWAS A, PAL S, PAUL S. Silicon as a powerful element for mitigation of cadmium stress in rice: A review for global food safety[J]. Plant Stress, 2023, 10: 100 237. |
| [126] | XU X J, SUN S K, ZHANG W W, et al. Editing silicon transporter genes to reduce arsenic accumulation in rice[J]. Environmental Science and Technology, 2024, 58(4): 1 976-1 985. |
| [127] | YAMAJI N, SAKURAI G, MITANI-UENO N, et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36): 11 401-11 406. |
| [128] | MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691. |
| [129] | YAMAJI N, MITATNI N, MA J F. Transporter regulating silicon distribution in rice shoots[J]. The Plant Cell, 2008, 20(5): 1 381-1 389. |
| [130] | YAN G C, FAN X P, TAN L, et al. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice[J]. Plant Physiology and Biochemistry, 2021, 158: 219-227. |
| [131] | MITANI-UENO N, YAMAJI N, MA J F. High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice[J]. Plant and Cell Physiology, 2016, 57(12): 2 510-2 518. |
| [132] | HUANG F Y, LI Z M, YANG X, et al. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study[J]. Science of the Total Environment, 2024, 918: 170 663. |
| [133] | RIAZ M, KAMRAN M, RIZWAN M, et al. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review[J]. Chemosphere, 2021, 273: 129 690. |
| [134] | WANG X X, JIANG J C, DOU F G, et al. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes[J]. Paddy and Water Environment, 2021, 19(4): 569-584. |
| [135] | ZENG P, WEI B Y, ZHOU H, et al. Co-application of water management and foliar spraying silicon to reduce cadmium and arsenic uptake in rice: A two-year field experiment[J]. Science of the Total Environment, 2022, 818: 151 801. |
| [136] | CHEN H X, HUANG X Y, CHEN H, et al. Effect of silicon spraying on rice photosynthesis and antioxidant defense system on cadmium accumulation[J]. Scientific Reports, 2024, 14(1): 15 211-15 265. |
| [137] | 李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2):86-95. |
| [138] | HIMENO S, SUMI D, FUJISHIRO H. Toxicometallomics of cadmium, manganese and arsenic with special reference to the roles of metal transporters[J]. Toxicological Research, 2019, 35(4): 311-317. |
| [139] | GUAN D, WU J M, XIE Y H, et al. Double prevention of cadmium uptake by iron and zinc in rice seedling—A hypotonic study[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(1): 318-330. |
| [140] | WANG M E, YANG Y, CHEN W P. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in Southern China[J]. Journal of Environmental Quality, 2018, 47(2): 306-311. |
| [141] | QIN S Y, LIU H E, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review[J]. Pedosphere, 2020, 30(2): 168-180. |
| [142] | LIU C L, DING S L, ZHANG A P, et al. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding[J]. Journal of Integrative Plant Biology, 2020, 62(3): 349-359. |
| [143] | 操宏伟. OsHIPP16响应Cd胁迫下调节水稻解毒功能的鉴定[D]. 南京: 南京农业大学, 2021. |
| [144] | TAKAHASHI R, ISHIMARU Y, SENOURA T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4 843-4 850. |
| [145] | YANG M, ZHANG W, DONG H X, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PloS One, 2013, 8(12): e83990. |
| [146] | QU Z T, NAKANISHI H. Amino acid residues of the metal transporter OsNRAMP5 responsible for cadmium absorption in rice[J]. Plants, 2023, 12(24): 4 182. |
| [147] | PERIS-PERIS C, SERRA-CARDONA A, SANCHEZ-SANUY F, et al. Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice[J]. Molecular Plant-Microbe Interactions, 2017, 30(5): 385-398. |
| [148] | PHI N B, PHUONG N D N, DAT V H X, et al. Expression profiles of OsNramp6 transcript variants involving in Magnaporthe oryzae resistance and non-resistance of Vietnamese rice cultivars[J]. European Journal of Plant Pathology, 2021, 161(4): 907-916. |
| [1] | 冯宇鹏, 贺娟, 梁健, 刘阿康, 陈丹阳, 万克江. 我国水稻大面积单产提升的挑战与思考[J]. 中国稻米, 2025, 31(6): 1-3. |
| [2] | 扎西罗布, 果洛卓玛, 央宗, 久美, 桑杰罗布, 彭红, 谢华斌, 李佳阳, 陈淳, 王加峰. 分子标记辅助选择改良加巴热的稻瘟病和白叶枯病抗性[J]. 中国稻米, 2025, 31(6): 102-108. |
| [3] | 毛晓梅, 薛美琴, 朱丽晶, 杨健. “大棚番茄-单季稻”轮作模式对土壤性状及水稻生长和产量的影响[J]. 中国稻米, 2025, 31(6): 109-112. |
| [4] | 许建华, 郭婧. 虾稻共作水稻品种筛选及技术要点[J]. 中国稻米, 2025, 31(6): 113-116. |
| [5] | 顾天飞, 周奶弟, 应俊杰, 唐偲钟, 何豪豪, 陈惠哲, 沈希宏, 朱贵平. 籼粳杂交水稻嘉禾优7245高质高效栽培技术研究及产业化开发[J]. 中国稻米, 2025, 31(6): 117-120. |
| [6] | 胡贤巧, 卢林, 符渊淼, 姜慧萍, 闪月, 陈铭学, 丁利群. 我国主要产区水稻主导品种稻米品质比较分析[J]. 中国稻米, 2025, 31(6): 12-19. |
| [7] | 朱山姊, 顾兴国. 水稻种质资源保护推动稻作文化传承发展研究——以浙江省农业文化遗产地为例[J]. 中国稻米, 2025, 31(6): 121-126. |
| [8] | 王亚梁, 朱德峰, 申红芳, 万克江, 朱晖, 张均华, 王丹英, 符冠富, 万品俊, 唐伟, 陈惠哲, 李春生, 徐树仁. 水稻大面积提产增效技术集成创新与应用——以广德为例[J]. 中国稻米, 2025, 31(6): 4-8. |
| [9] | 谭玉娇, 王浩钧, 张顺涛, 王婷, 谭玉龙, 李鹏丽, 白建国, 唐唯, 吕世华, 张福锁, 徐玖亮. 地膜覆盖和氮肥用量对洱海水稻产量和氮利用效率的影响[J]. 中国稻米, 2025, 31(6): 55-65. |
| [10] | 赫兵, 王晓航, 李超, 付连朔, 张明磊, 张强, 韩康顺, 陈殿元, 王帅. 吉林水稻育种目标和性状及未来发展分析——基于对吉林水稻遗传育种一线人员的问卷调查数据[J]. 中国稻米, 2025, 31(6): 72-77. |
| [11] | 吴海燕, 徐芝亮, 何俊海. 江西省水稻种业高质量发展对策研究[J]. 中国稻米, 2025, 31(6): 85-90. |
| [12] | 陈盈, 杜平, 包凯军, 宫殿凯, 于广星, 李睿, 代贵金, 刘宪平, 郑文静. 东港市“整县制推进”水稻产量提升路径探讨[J]. 中国稻米, 2025, 31(6): 9-11. |
| [13] | 章哲, 黄坤明, 褚光. 我国水稻“双季双直播”生产模式的优势、问题以及发展对策[J]. 中国稻米, 2025, 31(5): 1-7. |
| [14] | 梁烜赫, 李善龙, 赵鑫, 王建新, 李涛, 辛雨薇, 曹铁华. 长期秸秆还田下减氮增密对稻田土壤质量及水稻产量的影响[J]. 中国稻米, 2025, 31(5): 100-104. |
| [15] | 赵双玲, 王圣毅, 王肖娟, 马陈虎, 郝玉峰, 朱江艳, 包芳俊. CO2水溶液对膜下滴灌水稻生长发育及产量的影响[J]. 中国稻米, 2025, 31(5): 105-107. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||