›› 2014, Vol. 20 ›› Issue (4): 1-8.DOI: 10.3969/j.issn.1006-8082.2014.04.001
Online:
2014-07-20
Published:
2014-07-20
通讯作者:
朱丽
基金资助:
国家自然科学基金(31171532);中央级公益性科研院所专项资金项目(2009RG002-1)
CLC Number:
KANG Shu-Jing-12, QIAN Qian-1, ZHU Li-1 *. Advances on Molecular Mechanism of Auxin in Rice Root[J]. , 2014, 20(4): 1-8.
康书静12, 钱前1, 朱丽1 *. 生长素对水稻根系生长发育调控的研究进展[J]. 中国稻米, 2014, 20(4): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2014.04.001
[1] Ishikawa H, Evans M L. Specialized zones of development in roots [J]. Plant Physiol, 1995, 109(3): 725–727.[2] Berg V, Willemsen C, Hendriks V, et al. Short-range control of cell differentiation in the Arabidopsis root meristem [J]. Nature, 1997, 390: 287-289.[3] Liu H J, Wang S F, Yu X B, et al. ARL1, a LOB-domain protein required for adventitious root formation in rice [J]. Plant J, 2005, 43(1): 47-56.[4] Itoh J, Nonomura K, Ikeda K, et al. Rice plant development: from zygote to spikelet [J]. Plant Cell Physiol, 2005, l46: 23-47.[5] Casimiro, Beeekman T, Graham N, et al. Dissecting Arabidopsis lateral root development [J]. Trends Plant Sci, 2003, 8: 165-171.[6] Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture [J]. Plant Cell Environ, 2005, 28: 67-77.[7] Ljung K. Auxin metabolism and homeostasis during plant development [J]. Development, 2013, 40: 943-950.[8] Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis [J]. PNAS, 2011, 108(45) : 18512-18517.[9] Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants [J]. Mol Plant, 2012, 5(2): 334-348.[10] Yamamoto Y, Kamiya N, Morinaka Y, et al. Auxin biosynthesis by the YUCCA genes in rice [J]. Plant Physiol, 2007, 143(3): 1362-1371.[11] Woo Y M, Park H J, Park J J, et al. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio [J]. Plant Mol Biol, 2007, 65(1-2): 125-136.[12] Sazuka T, Kamiya N, Nishimura T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos [J]. Plant J, 2009, 60(2): 227-241.[13] Zhao Z G, Zhang Y H, Liu X, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice[J]. Dev Cell, 2013, 27(1): 113-122.[14] Bhalerao R P, Eklof J, Ljung K, et al. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings [J]. Plant J, 2002, 29(3): 325-332.[15] Yang H B, Murphy A S. Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in Schizosaccharomyces pombe [J]. Plant J, 2009, 59(1): 179-191.[16] Elke B, Martin K, Jakub R, et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants [J]. Nature, 2012, 485(7396): 119-122.[17] 张俊红,孟成生,张彩英,等. 小麦和水稻auxin基因家族的生物信息学比较分析[J]. 华北农学报,2009,24(6):15-19.[18] Xu M, Zhu L, Shou H X, et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice [J]. Plant Cell Physiol, 2005, 46(10): 1674-1681.[19] Kitomi Y, Ogawa A, Kitano H, et al. CRL4 regulates crown root formation through auxin transport in rice [J]. Plant Root, 2008, 2: 19-28.[20] Liu S P, Wang J R, Wang L, et al. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family [J]. Cell Res, 2009, 19(9): 1110-1119.[21] Geldner N, Richter S, Vieten A, et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis [J]. Development, 2004, 131: 389-400.[22] Christensen S K, Dagenais N, Chory J, et al. Regulation of auxin response by the protein kinase PINOID [J]. Cell, 2000, 100( 4) : 469-478.[23] Zhuang X L, Jiang X F, Li J H, et al. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development [J]. Plant J, 2006, 48(4): 581-591.[24] Zhao F Y, Hu F, Zhang S Y, et al. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice [J]. Environ Sci Pollut Res, 2013, 20: 5449-5460.[25] Sauer M, Kleine-Vehn J. Auxin binding protein1: the outsider [J]. Plant Cell, 2011, 23(6): 2033-2043 .[26] 胡应红,李正国,宋红丽,等. 植物生长素受体 [J]. 植物生理学通讯,2007,43(1):168-172.[27] Tan X, Calderon-Villalobos L, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase [J]. Nature, 2007, 446: 640-645.[28] Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice [J]. PLoS ONE, 2012, 7(1): e30039.[29] Han Y, Cao H, Jiang J F, et al. Rice ROOT ARCHITECTURE ASSOCIATED1 binds the proteasome subunit RPT4 and is degraded in a D-box and proteasome-dependent manner [J]. Plant Physiol, 2008, 148(2): 843-855.[30] Ge L, Chen H, Jiang J F, et al. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity [J]. Plant Physiol, 2004, 135(3): 1502-1513.[31] Wang X F, He F F, Ma X X, et al. OsCAND1 is required for crown root emergence in rice [J]. Mol Plant, 2011, 4(2): 289-299.[32] Kang B, Zhang Z C, Wang L L, et al. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation [J]. Plant J, 2013, 74(1): 86-97.[33] Ramos A, Zenser N, Leyser O, et al. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent [J]. Plant Cell, 2001, 13: 2349-2360.[34] Fu J, Yu H H, Li X H, et al. Rice GH3 gene family: regulators of growth and development [J]. Plant Signal Behav, 2011, 6(4): 570-574.[35] 鄂志国,王磊. 水稻中生长素作用的分子机理研究进展[J]. 核农学报,2011,25(4):730 -735.[36] Zhang S W, Li C H, Cao J, et al. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation [J]. Plant Physiol, 2009, 151(4): 1889-1901.[37] Kitomi Y, Inahashi H, Takehisa H, et al. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice [J]. Plant Sci, 2012, 190: 11.[38] Zhu Z X, Liu Y, Liu S J, et al. A gain-of-function mutation in OsIAA11 affects lateral root development in rice [J]. Mol Plant, 2012, 5(1): 154-161.[39] Ni J, Wang G H, Zhu Z X, et al. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice [J]. Plant J, 2011, 68(3): 433-442.[40] 吴蓓,吴建勇,蔡刘体,等. 生长素反应因子[J]. 植物生理学通讯,2005,41(3):273-278.[41] Inukai Y, Sakamoto T, Ueguchi-Tanaka M, et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling [J]. Plant Cell, 2005, 17(5): 1387-1396.[42] Liu H J, Wang S F, Yu X B, et al. ARL1, a LOB-domain protein required for adventitious root formation in rice [J]. Plant J, 2005, 43(1): 47-56.[43] Qi Y H, Wang S K, Shen C J, et al. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice [J]. New Phytol, 2012, 193(1): 109-120.[44] Shen C J, Wang S K, Zhang S N, et al. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.) [J]. Plant Cell Environ, 2013, 36: 607-620.[45] Kitomi Y, Hidemi K, Inukai Y. Molecular mechanism of crown root initiation and the different mechanisms between crown root and radicle in rice [J]. Plant Signal Behav, 2011, 6(9): 1276-1278.[46] Zhao Y, Hu Y F, Dai M Q, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice [J]. Plant Cell, 2009, 21(3): 736-748.[47] Liu W, Xu Z H, Luo D, et al. Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity [J]. Plant J, 2003, 36(2): 189-202.[48] Nakamura A, Fujioka S, Sunohara H, et al. The role of OsBRI1 andits homologous genes, OsBRL1 and OsBRL3 in rice [J]. Plant Physiol, 2006, 140: 580-590.[49] Nakamura A, Umemura I, Gomi K, et al. Production and characterization of auxininsensitive rice by overexpression of a mutagenized rice IAA protein [J]. Plant J, 2006, 46: 297-306.[50] Zhao Y, Hu Y F, Dai M Q, et al. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development [J]. J Exp Bot, 2012, 63(11): 4151-4164.[51] Koltai H. Strigolactones are regulators of root development [J]. New Phytol, 2011, 190(3): 545-549.[52] Lofke C, Zwiewka M, Heilmannd I, et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism [J]. PNS, 2013, 110(9): 3627-3632 .[53] Cho S H, Yoo S C, Zhang H, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development [J]. New Phytol, 2013, 198(4): 1071-1084.[54] Song Y L, You J, Xiong L Z. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis [J]. Plant Mol Biol, 2009, 70(3): 297-309.[55] Zhang J, Peng Y L, Guo Z J. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants [J]. Cell Res, 2008, 18(4): 508-521. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||