China Rice ›› 2021, Vol. 27 ›› Issue (2): 15-20.DOI: 10.3969/j.issn.1006-8082.2021.02.004
• Special Thesis & Basic Research • Previous Articles Next Articles
Yan ZHANG1(), Qina HUANG1, Guosheng SHAO1,*(
), Honghang WANG2,*(
)
Received:
2020-12-30
Online:
2021-03-20
Published:
2021-03-20
Contact:
Guosheng SHAO, Honghang WANG
About author:
1st author: zhangyan11@caas.cn
张燕1(), 黄奇娜1, 邵国胜1,*(
), 王宏航2,*(
)
通讯作者:
邵国胜,王宏航
作者简介:
第一作者:zhangyan11@caas.cn
基金资助:
CLC Number:
Yan ZHANG, Qina HUANG, Guosheng SHAO, Honghang WANG. Advances in Research and Application of Agronomic Control Technologies Related to Cadmium Contamination in Rice[J]. China Rice, 2021, 27(2): 15-20.
张燕, 黄奇娜, 邵国胜, 王宏航. 水稻镉污染相关农艺调控技术研究与应用进展[J]. 中国稻米, 2021, 27(2): 15-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2021.02.004
[1] | ZHOU D, SONG X, ZHAO F J, et al.Soil environment and pollution remediation preface[J]. Pedosphere, 2017, 27(3): 387-388. |
[2] | LUO L, MA Y B, ZHANG S Z, et al.An inventory of trace element inputs to agricultural soils in china[J]. Journal of Environmental Management, 2009, 90(8): 2 524-2 530. |
[3] | 周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料,2020(2):89-98. |
[4] | WANI P A, KHAN M S, ZAIDI A.Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea[J]. Australian Journal of Experimental Agriculture, 2007, 47: 712-720. |
[5] | TRAN T A, POPOVA L P.Functions and toxicity of cadmium in plants: Recent advances and future prospects[J]. Turkish Journal of Botany, 2013, 37(1): 1-13. |
[6] | FERRARI P, ARCELLA D, HERAUD F, et al.Impact of refining the assessment of dietary exposure to cadmium in the european adult population[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2013, 30(4): 687-697. |
[7] | SONG Y, WANG Y B N, MAO W F, et al. Dietary cadmium exposure assessment among the chinese population[J]. Plos One, 2017, 12(5): e0177978. |
[8] | QIAN Y Z, CHEN C, ZHANG Q, et al.Concentrations of cadmium, lead, mercury and arsenic in chinese market milled rice and associated population health risk[J]. Food Control, 2010, 21(12): 1 757-1 763. |
[9] | CHEN H P, TANG Z, WANG P, et al.Geographical variations of cadmium and arsenic concentrations and arsenic speciation in chinese rice[J]. Environmental Pollution, 2018, 238: 482-490. |
[10] | 陈亮妹,马友华,王陈丝丝,等. 不同污染程度农田土壤重金属修复技术研究[J]. 中国农学通报,2016,32(32):94-99. |
[11] | 嵇东,孙红. 农田土壤重金属污染状况及修复技术研究[J]. 农业开发与装备,2018(12):74-75. |
[12] | 杨蕾. 我国土壤重金属污染的来源、现状、特点及治理技术[J]. 中国资源综合利用,2018,36(2):151-153. |
[13] | 张丽娜,宗良纲,付世景,等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J]. 安全与环境学报,2006(5):49-52. |
[14] | SUN L, CHEN S, CHAO L, et al.Effects of flooding on changes in eh, ph and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514-518. |
[15] | HUANG J H, WANG S L, LIN J H, et al.Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time[J]. Paddy and Water Environment, 2013, 11: 483-491. |
[16] | ZHENG S A, ZHANG M K.Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443. |
[17] | PAN Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261: 59-69. |
[18] | 杨小粉,吴勇俊,张玉盛,等. 水分管理对水稻镉吸收的影响[J]. 中国稻米,2019, 25(4):34-37. |
[19] | 刘昭兵,纪雄辉,彭华,等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报,2010,21(4):908-914. |
[20] | 杨定清,雷绍荣,李霞,等. 大田水分管理对控制稻米镉含量的技术研究[J]. 中国农学通报,2016,32(18):11-16. |
[21] | ARAO T, KAWASAKI A, BABA K, et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9 361-9 367. |
[22] | 田桃,廖柏寒,曾敏,等. 水分管理模式与土壤Eh值对水稻Cd迁移与累积的影响[J]. 环境科学,2017,38(1):343-351. |
[23] | ALPHA J M, CHEN J H, ZHANG G P.Effect of nitrogen fertilizer forms on growth, photosynthesis, and yield of rice under cadmium stress[J]. Journal of Plant Nutrition, 2009, 32(2): 306-317. |
[24] | 曹仁林,霍文瑞,何宗兰,等. 钙镁磷肥对土壤中镉形态转化与水稻吸镉的影响[J]. 重庆环境科学,1993,15(6):6-9. |
[25] | 刘昭兵,纪雄辉,彭华,等. 磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报,2012,23(6):1 585-1 590. |
[26] | JIAO Y, GRANT C A, BAILEY L D.Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat[J]. Journal of the Science of Food and Agriculture, 2010, 84(8): 777-785. |
[27] | GAO X P, FLATEN D N, TENUTA M, et al.Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization[J]. Plant and Soil, 2011, 338: 423-434. |
[28] | 衣纯真,傅桂平,张福锁. 不同钾肥对水稻镉吸收和运移的影响[J]. 中国农业大学学报,1996,1(3):65-70. |
[29] | XU Y L, TANG H M, LIU T X, et al.Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in southern China[J]. Environmental Science and Pollution Research, 2018, 25(20): 19 836-19 844. |
[30] | 张亚丽,沈其荣,姜洋. 有机肥料对镉污染土壤的改良效应[J]. 土壤学报,2001,38(2):212-218. |
[31] | 马铁铮,马友华,付欢欢,等. 生物有机肥和生物炭对Cd和Pb污染稻田土壤修复的研究[J]. 农业资源与环境学报,2015,32(1):14-19. |
[32] | 王世华,罗群胜,刘传平,等. 叶面施硅对水稻籽实重金属积累的抑制效应[J]. 生态环境,2007,16(3):875-878. |
[33] | 张宇鹏,谭笑潇,陈晓远,等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响[J]. 生态环境学报,2020,29(2):388-393. |
[34] | 邓思涵,龙九妹,陈聪颖,等. 水稻叶镉与米镉含量的相关性及叶面肥对镉的阻控研究[J]. 湖南农业科学,2019(2):24-28. |
[35] | 赵明柳,唐守寅,董海霞,等. 硅酸钠对重金属污染土壤性质和水稻吸收Cd、Pb、Zn的影响[J]. 农业环境科学学报,2016,35(9):1 653-1 659. |
[36] | 索炎炎,吴士文,朱骏杰,等. 叶面喷施锌肥对不同镉水平下水稻产量及元素含量的影响[J]. 浙江大学学报(农业与生命科学版),2012,38(4):449-458. |
[37] | 虞银江,廖海兵,陈文荣,等. 水稻吸收、运输锌及其籽粒富集锌的机制[J]. 中国水稻科学,2012,26(3):365-372. |
[38] | 管恩相,谭旭生,刘洪,等. 叶面施硒对稻米中镉等重金属含量影响的研究初报[J]. 种子科技,2013,31(5):60-63. |
[39] | BROWN S, CHRISTENSEN B, LOMBI E, et al.An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution, 2005, 138(1): 34-45. |
[40] | LOMBI E, HAMON R E, MCGRATH S P, et al.Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques[J]. Environmental Science & Technology, 2003, 37(5): 979-984. |
[41] | ZHU H H, CHEN C, XU C, et al.Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical china[J]. Environmental Pollution, 2016, 219: 99-106. |
[42] | YANG Y J, CHEN J M, HUAN Q N, et al.Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils[J]. Chemosphere, 2018, 193: 547-556. |
[43] | 张青,王煌平,孔庆波,等. 不同生育期施加超细磷矿粉对水稻吸收和转运Pb、Cd的影响[J].农业环境科学学报,2020,39(1):45-54. |
[44] | 方至萍,廖敏,张楠,等. 施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响[J]. 环境科学,2017,38(7):3 028-3 035. |
[45] | JUANG K W, HO P C, YU C H.Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants[J]. Environmental Science and Pollution Research, 2012, 19(5): 1 696-1 708. |
[46] | BASHIR S, RIZWAN M S, SALAM A, et al.Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: Extraction techniques and adsorption mechanism[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(5): 727-732. |
[47] | 王晶,张旭东,李彬,等. 腐殖酸对土壤中Cd形态的影响及利用研究[J]. 土壤通报,2002,33(3):185-187. |
[48] | 苏初连,邓爱妮,范琼,等. 腐殖酸类营养液改良镉污染稻田土壤和保障水稻安全生产[J]. 分子植物育种, |
[49] | 李坤陶. 生物修复技术及其应用[J]. 生物学教学,2007,32(1):4-6. |
[50] | SIRIPORNADULSIL S, SIRIPORNADULSIL W.Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety, 2013, 94: 94-103. |
[51] | LI F, ZHENG Y, TIAN J, et al.Cupriavidus sp. Strain Cd02-mediated ph increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109 655. |
[52] | SHI X Y, ZHOU G T, LIAO S J, et al.Immobilization of cadmium by immobilized Alishewanella sp. WH16-1 with alginate-lotus seed pods in pot experiments of cd-contaminated paddy soil[J]. Journal of Hazardous Materials, 2018, 357: 431-439. |
[53] | WANG C R, HUANG Y C, YANG X R, et al.Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252: 126 603. |
[54] | PRAMANIK K, MITRA S, SARKAR A, et al.Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain enterobacter aerogenes MCC 3092[J]. Journal of Hazardous Materials, 2018, 351: 317-329. |
[55] | PRAMANIK K, MITRA S, SARKAR A, et al.Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium[J]. Environmental Science and Pollution Research, 2017, 24(31): 24 419-24 437. |
[56] | 尹艺,赵颖,马莲菊,等. 碱蓬内生真菌对镉胁迫水稻幼苗生长及生理生化指标的影响[J]. 贵州农业科学,2014(3):23-26. |
[57] | 刘江苇,刘颖,徐婷,等. 水稻内生菌研究进展及展望[J]. 生命科学研究,. |
[58] | 沈丽波,吴龙华,维娜,等. 伴矿景天-水稻轮作及磷修复剂对水稻锌镉吸收的影响[J]. 应用生态学报,2010,21(11): 2 952-2 958. |
[59] | 于玲玲,朱俊艳,黄青青,等. 油菜-水稻轮作对作物吸收累积镉的影响[J]. 环境科学与技术,2014,37(1):1-6. |
[60] | 谢运河,纪雄辉,彭华,等. 镉污染稻田改制玉米的农产品质量安全研究[J]. 农业现代化研究,2014,35(5):658-662. |
[61] | WANG J, LU X, ZHANG J, et al.Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil[J]. Journal of Hazardous Materials, 2020, 394: 122 505. |
[62] | KANG Z M, ZHANG W Y, QIN J H, et al.Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110 102. |
[63] | YANG X, ZHANG W Y, QIN J H, et al.Role of passivators for Cd alleviation in rice-water spinach intercropping system[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111 321. |
[64] | 徐卫红,黄河,王爱华,等. 根系分泌物对土壤重金属活化及其机理研究进展[J]. 生态环境,2006,15(1):184-189. |
[65] | DUAN G, SHAO G, TANG Z, et al.Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9. |
[66] | 王天抗,李懿星,宋书锋,等. 水稻籽粒镉低积累资源挖掘及其新材料创制[J]. 杂交水稻,2020,doi:10.16267/j.cnki.1005-3956.20200904.287. |
[67] | SUN L, XU XX, JIANG YR, et al.Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontiers in Plant Science, 2016, 7: 1 407. |
[68] | SASAKI A, YAMAJI N, YOKOSHO K, et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2 155-2 167. |
[69] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytolologist, 2011, 189(1): 190-199. |
[70] | URAGUCHI S, KAMIYA T, CLEMENS S, et al.Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa)[J]. Physiologia Plantarum, 2014, 151(3): 339-347. |
[71] | ASHIKARI M, SAKAKIBARA H, LIN S Y, et al.Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5 735): 741-745. |
[72] | XUE W Y, XING Y Z, WENG X Y, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[73] | LI D Y, HUANG Z Y, SONG S H, et al.Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): E6026-E6035. |
[74] | XU X Y, MCGRATHG S P, MEHARG A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J]. Environmental Science & Technology, 2008, 42(15): 5 574-5 579. |
[75] | LI R Y, STROUD J L, MA J F, et al.Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science & Technology, 2009, 43(10): 3 778-3 783. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||