China Rice ›› 2021, Vol. 27 ›› Issue (2): 21-27.DOI: 10.3969/j.issn.1006-8082.2021.02.005
• Special Thesis & Basic Research • Previous Articles Next Articles
Qianlong LI1, Hui WANG1,2, Yu FANG1,2, Conghe ZHANG1,2,*()
Received:
2020-12-30
Online:
2021-03-20
Published:
2021-03-20
Contact:
Conghe ZHANG
李潜龙1, 王慧1,2, 方玉1,2, 张从合1,2,*()
通讯作者:
张从合
基金资助:
CLC Number:
Qianlong LI, Hui WANG, Yu FANG, Conghe ZHANG. Research Progress in Molecular Genetics of Important Agronomic Traits and Breeding Utilization in Rice[J]. China Rice, 2021, 27(2): 21-27.
李潜龙, 王慧, 方玉, 张从合. 我国水稻重要农艺性状分子遗传研究进展及在育种上的应用[J]. 中国稻米, 2021, 27(2): 21-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2021.02.005
[1] | 袁隆平. 杂交水稻的育种战略设想[J]. 杂交水稻,1987(1):1-3. |
[2] | 陈奕伊. 水稻OsGS3、OsGW2、OsGn1α定向聚合突变体创制及分析[D]. 成都:电子科技大学,2018. |
[3] | 郭韬,余泓,邱杰,等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学:生命科学,2019,49(10):1 185-1 212. |
[4] | LI X, QIAN Q, FU Z, et al.Control of tillering in rice[J]. Nature, 2003, 422(6 932): 618-621. |
[5] | MIYOSHI K, AHN B O, KAWAKATSU T, et al.PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450[J]. Proceedings of the National Academy of Sciences, 2004, 101(3): 875-880. |
[6] | FAN C, XING Y, MAO H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[7] | SONG X J, HUANG W, SHI M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[8] | WANG Y, XIONG G, HU J, et al.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[9] | WANG S, LI S, LIU Q, et al.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[10] | WAN X, WENG J, ZHAI H, et al.Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 2008, 179(4): 2 239-2 252. |
[11] | WANG S, WU K, YUAN Q, et al.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[12] | LI Y, FAN C, XING Y, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[13] | HU Z, LU S J, WANG M J, et al.A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[14] | JIAO Y, WANG Y, XUE D, et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. |
[15] | WANG J, ZHOU L, SHI H, et al.A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361: 1 026-1 028. |
[16] | WANG Z Y, WU Z L, XING Y Y, et al.Nucleotide sequence of rice waxy gene[J]. Nucleic Acids Research, 1990, 18(19): 5 898-5 899. |
[17] | LI Y, FAN C, XING Y, et al.Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[18] | PENG B, KONG H, LI Y, et al.OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5: 4 847-4 858. |
[19] | YANG Y, GUO M, SUN S, et al.Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1 949-1 960. |
[20] | CHEN S H, YANG Y, SHI W W, et al.Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7):1 850-1 861. |
[21] | PENG C, WANG Y H, LIU F, et al.FLOURY ENDOSPERM 6 encodes a CBM 48 domain‐containing protein involved in compound granule formation and starch synthesis in rice endosperm[J]. The Plant Journal, 2014, 77(6): 917-930. |
[22] | WANG E, WANG J, ZHU X, et al.Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1 370-1 374. |
[23] | SUN X, CAO Y, YANG Z, et al.Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. The Plant Journal, 2004, 37(4): 517-527. |
[24] | LIU Y Y, CAO Y L, ZHANG Q L, et al.A cytosolic triosephosphate isomerase is a key component in Xa3/Xa26-mediated resistance[J]. Plant Physiology, 2018, 178(2): 923-925. |
[25] | WANG Q, LIU Y, HE J, ET AL.STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus[J]. Nature Communications, 2014, 5:4 768-4 775. |
[26] | YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, et al.Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1 663-1 668. |
[27] | 闫成业,刘艳,牟同敏. 分子标记辅助选择聚合Xa7、Xa21和cry1C*基因改良杂交水稻金优207的白叶枯病和螟虫抗性[J]. 杂交水稻,2013,28(5):55-62. |
[28] | IYER A S, MCCOUCH S R.The rice bacterial blight resistance gene Xa5 encodes a novel form of disease resistance[J]. Molecular Plant-Microbe Interactions, 2005, 17(12): 1 348-1 354. |
[29] | TIAN D, WANG J, ZENG X, et al.The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum[J]. The Plant Cell, 2014, 26(1): 497-515. |
[30] | CHU Z, FU B, YANG H, et al.Targeting Xa13, a recessive gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics, 2006, 112(3): 455-461. |
[31] | SONG W Y, WANG G L, CHEN L L, et al.A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J].Science, 1995, 270(5243): 1 804-1 806. |
[32] | ZHOU Y L, UZOKWE V N E, ZHANG C H, et al. Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon)[J]. Crop Protection, 2011, 30(6): 637-644. |
[33] | 杨红. 水稻抗稻瘟病基因rbr2的分离和抗白叶枯病基因Xa25(t)的精细定位[D]. 武汉:华中农业大学,2008. |
[34] | GU K, YANG B, TIAN D, et al.R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005, 435(7045): 1 122-1 125. |
[35] | HUTIN M, SABOT F, GHESQUIERE A, et al.A knowledge-based molecular screen uncovers a broad-spectrum\r, OsSWEET14\r, resistance allele to bacterial blight from wild rice[J]. The Plant Journal, 2015, 84(4): 694-703. |
[36] | DENG Y, ZHAI K, XIE Z, et al.Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355: 962-965. |
[37] | WANG J, LIU X, ZHANG A, et al.A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice[J]. Cell Research, 2019, 29(10): 820-831 |
[38] | DU B, ZHANG W, LIU B, et al.Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences of the United States America, 2009, 106(52): 22 163-22 168. |
[39] | LIU Y Q, WU H, CHEN H,et al.A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature Biotechnology, 2015, 33(3): 301-305. |
[40] | 邹拓,耿雷跃,张薇,等. 水稻抗病虫基因挖掘及聚合育种研究进展[J]. 河北农业科学,2018,22(5):52-72. |
[41] | LI X M, CHAO D Y, WU Y, et al.Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[42] | MA Y, DAI X, XU Y, et al.COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(160): 1 209-1 221. |
[43] | WANG D, QIN B X, LI X, et al. Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice[J]. PLOS Genetics, 2016, 12(2): 1 005 844-1 005 866. |
[44] | MAO D, XIN Y, TAN Y, et al.Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate[J]. Proceedings of the National Academy of Sciences, 2019, 116(9): 3494-3501. |
[45] | REN Z H, GAO J P, LI L G, et al.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1 141-1 146. |
[46] | ZHOU Y, LIU C, TANG D, et al.The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates catC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice[J]. The Plant Cell, 2018, 30(5): 1 100-1 118. |
[47] | LUO J S, HUANG J, ZENG D L, et al.A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9: 645-654. |
[48] | YAN H, XU W, XIE J, et al.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10: 2 562-2 574. |
[49] | MIYADATE H, ADACHI S, HIRAIZUMI A, et al.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
[50] | ODA K, OTANI M, URAGUCHI S, et al.Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Bioscience Biotechnology and Biochemistry, 2011, 75(6): 1 211-1 213. |
[51] | SHIMO H, ISHIMARU Y, AN G, et al.Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5 727-5 734. |
[52] | LAN H X, WANG Z F, WANG Q H, et al.Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2): 1 201-1 210. |
[53] | 朱义旺,林雅容,陈亮. 我国水稻分子育种研究进展[J]. 厦门大学学报(自然科学版),2016,55(5):671. |
[54] | LI Y,TAO H,ZHAO X,et al.Molecular improvement of grain weight and yield in rice by using GW6 gene[J]. Rice Science, 2014, 21(3): 127-132. |
[55] | 王岩,付新民,高冠军,等. 分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J]. 分子植物育种,2009,7(4):31-35. |
[56] | 庄杰云,朱玉君,屠国庆,等. 多基因聚合育成优质高产杂交稻新组合中优16[J]. 杂交水稻,2010,25(5):12-14. |
[57] | LIU Q Q, LI Q F, CAI X L, et al.Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice[J]. Crop Science, 2006, 46: 2 354-2 360. |
[58] | 曹立勇,占小登,庄杰云,等. 利用分子标记辅助育种技术育成优质高产抗病杂交稻国稻1号[J]. 杂交水稻,2005,20(3):16-18. |
[59] | 邓其明,周宇爝,蒋昭雪,等. 白叶枯病抗性基因 Xa21、Xa4和 Xa23的聚合及其效应分析[J]. 作物学报,2005,31(9):1 241-1 246. |
[60] | 刘驰,韦敏益,秦钢,等. 利用MAS技术培育水稻多抗、优质强恢复系桂恢663[J]. 西南农业学报,2019,32(2):7-13. |
[61] | 赖怡帆,孙君玥,张旭辉,等. 分子标记辅助选择Pigm基因改良湘晚籼13号的稻瘟病抗性[J]. 湖南农业大学学报(自然科学版),2019,45(2):3-7. |
[62] | 朱旭东,陈红旗,陈宗祥,等. 利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性[J]. 中国水稻科学,2008,22(1):23-27. |
[63] | 倪大虎,易成新,李莉,等. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报,2008,34(1):100-105. |
[64] | 朱永生,白建林,谢鸿光,等. 聚合白背飞虱和褐飞虱抗性基因创制杂交水稻恢复系[J]. 中国水稻科学,2019,33(5):421-428. |
[65] | 徐鹏,叶胜拓,牟同敏. 分子标记辅助选择改良水稻恢复系R1813稻瘟病、白叶枯病和褐飞虱抗性研究[J]. 杂交水稻,2018,34(1):62-69. |
[66] | 王才林,张亚东,赵凌,等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米,2019,25(1):1-6. |
[67] | 郭龙彪,薛大伟,王慧中,等. 转基因与常规杂交相结合改良水稻耐盐性[J]. 中国水稻科学,2006,20(2):141-146. |
[68] | 王月华,何虎,潘晓华.我国水稻育种技术发展历程回顾[J]. 江西农业学报,2012,24(2):26-28. |
[69] | 龙起樟,黄永兰,唐秀英,等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学,2019, 33(5):407-420. |
[70] | 胡昌泉,徐军望,苏军,等. 农杆菌介导法获得转可溶性淀粉合成酶基因籼稻[J]. 福建农业学报,2003,18(2):65-68. |
[71] | 胡燕. 利用农杆菌介导法将抗稻瘟病基因Pi-d2导入杂交稻骨干亲本蜀恢527的研究[D]. 成都:四川农业大学,2008. |
[72] | 向殿军,满丽莉,殷奎德,等. 拟南芥ICE1基因转化水稻的进一步研究[J]. 生物技术通报,2008(6):90-93. |
[73] | 张妍,王瑛,梁玉玲,等. 转LEA3 基因水稻的抗性分析[J]. 河北农业大学学报,2005,28(5):33-37. |
[74] | ZHU Q L, YU S Z, ZENG D C, et al.Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system[J]. Molecular Plant, 2017, 10: 918-929. |
[75] | WANG C, LIU Q, SHEN Y, et al.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[76] | LIU L, KUANG Y, YAN F, et al.Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2[J]. Plant Biotechnology Journal, 2020, 19(1): 1-3. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||