China Rice ›› 2021, Vol. 27 ›› Issue (4): 92-100.DOI: 10.3969/j.issn.1006-8082.2021.04.019
• Special Thesis & Basic Research • Previous Articles Next Articles
Jun REN#(), Yuexuan CAO#, Yong HUANG, Huirong DONG, Qing LIU, Kejian WANG(
)
Received:
2021-05-13
Online:
2021-07-20
Published:
2021-07-20
About author:
#Co-first author: 82101172206@caas.cn
任俊#(), 曹跃炫#, 黄勇, 董慧荣, 刘庆, 王克剑*(
)
通讯作者:
王克剑
作者简介:
#共同第一作者:82101172206@caas.cn
基金资助:
CLC Number:
Jun REN, Yuexuan CAO, Yong HUANG, Huirong DONG, Qing LIU, Kejian WANG. Development and Application of Genome Editing Technology in Rice[J]. China Rice, 2021, 27(4): 92-100.
任俊, 曹跃炫, 黄勇, 董慧荣, 刘庆, 王克剑. 基因编辑技术及其水稻中的发展和应用[J]. 中国稻米, 2021, 27(4): 92-100.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2021.04.019
[1] | FUKAGAWA N K, ZISKA L H. Rice: importance for global nutrition[J]. Journal of Nutritional Science and Vitaminolog, 2019, 65: 2-3. |
[2] | BIBIKOVA M, BEUMER K, TRAUTMAN J K, et al. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5 620): 764. |
[3] | BOGDANOVE A J, VOYTAS D F. TAL effectors: customizable proteins for DNA targeting[J]. Science, 2011, 333(6 051): 1 843-1 846. |
[4] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
[5] | MOJICA F J, DIEZ-VILLASENOR C, GARCíA-MARTíNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182. |
[6] | SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(8): 686-688. |
[7] | SHEN L, HUA Y, FU Y, et al. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice[J]. Science China-Life Sciences, 2017, 60(5): 506-515. |
[8] | POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653-663. |
[9] | MENG X, HU X, LIU Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice[J]. Science China-Life Sciences, 2018, 61(1): 122-125. |
[10] | HU X, WANG C, LIU Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system[J]. Journal of Genetics Genomics, 2017, 44(1): 71-73. |
[11] | XU R, QIN R, LI H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system[J]. Plant Biotechnology Journal, 2017, 15(6): 713-717. |
[12] | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
[13] | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science, 2016, 353(6299): aaf5573. |
[14] | QIN R, LI J, LI H, et al. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing[J]. Plant Biotechnology Journal, 2019, 17(4): 706-708. |
[15] | XU Y, MENG X, WANG J, et al. ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice[J]. Science China-Life Sciences, 2020, 63(3): 450-452. |
[16] | HU X, MENG X, LIU Q, et al. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnology Journal, 2018, 16(1): 292-297. |
[17] | HU X, WANG C, FU Y, et al. Expanding the range of CRISPR/Cas9 genome editing in rice[J]. Molecular Plant, 2016, 9(6): 943-945. |
[18] | ZHONG Z, SRETENOVIC S, REN Q, et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG[J]. Molecular Plant, 2019, 12(7): 1 027-1 036. |
[19] | WANG J, MENG X, HU X, et al. xCas9 expands the scope of genome editing with reduced efficiency in rice[J]. Plant Biotechnology Journal, 2019, 17(4): 709-711. |
[20] | ZENG D, LI X, HUANG J, et al. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice[J]. Plant Biotechnology Journal, 2020, 18(6): 1 348-1 350. |
[21] | Qin R, Li J, Liu X, et al. SpCas9-NG self-targets the sgRNA sequence in plant genome editing[J]. Nature Plants, 2020, 6(3): 197-201. |
[22] | REN J, MENG X, HU F, et al. Expanding the scope of genome editing with SpG and SpRY variants in rice[J]. Science China-Life Sciences, 2021, doi: 10.1007/s11427-020-1883-5. |
[23] | XU Z, KUANG Y, REN B, et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition[J]. Genome Biology, 2021, 22(1): 6. |
[24] | KANG B C, YUN J Y, KIM S T, et al. Precision genome engineering through adenine base editing in plants[J]. Nature Plants, 2018, 4(7): 427-431. |
[25] | LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19(1): 59. |
[26] | LI J, SUN Y, DU J, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529. |
[27] | LU Y, ZHU J K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 523-525. |
[28] | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 441-443. |
[29] | YAN F, KUANG Y, REN B, et al. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice[J]. Molecular Plant, 2018, 11(4): 631-634. |
[30] | ZONG Y, WANG Y, LI C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 438-440. |
[31] | ZONG Y, SONG Q, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, doi: 10.1038/nbt.4261. |
[32] | ZHANG X, ZHU B, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. |
[33] | LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. |
[34] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. |
[35] | HUA K, JIANG Y, TAO X, et al. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 167-2 169. |
[36] | LI H, LI J, CHEN J, et al. Precise modifications of both exogenous and endogenous genes in rice by prime editing[J]. Molecular Plant, 2020, 13(5): 671-674. |
[37] | LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. |
[38] | TANG X, SRETENOVIC S, REN Q, et al. Plant prime editors enable precise gene editing in rice cells[J]. Molecular Plant, 2020, 13(5): 667-670. |
[39] | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. |
[40] | KIM H K, YU G, PARK J, et al. Predicting the efficiency of prime editing guide RNAs in human cells[J]. Nature Biotechnology, 2021, 39(2): 198-206. |
[41] | LI J, LI H, CHEN J, et al. Toward precision genome editing in crop plants[J]. Molecular Plant, 2020, 13(6): 811-813. |
[42] | 秦瑞英,魏鹏程. Prime editing引导植物基因组精确编辑新局面[J].遗传,2020,42(6):519-523. |
[43] | KUSANO M, YANG Z, OKAZAKI Y, et al. Using metabolomic approaches to explore chemical diversity in rice[J]. Molecular Plant, 2015, 8(1): 58-67. |
[44] | CHE R, TONG H, SHI B, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2: 15 195. |
[45] | DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2015, 2: 15 203. |
[46] | DUAN P, XU J, ZENG D, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[47] | FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1 164-1 171. |
[48] | ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[49] | LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1 266-1 269. |
[50] | QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1 666-1 680. |
[51] | WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[52] | WANG Y, XIONG G, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[53] | ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 534-21 539. |
[54] | CHEN Y Y, ZHU A K, XUE P, et al. Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice[J]. Rice Science, 2020, 27(5): 405-413. |
[55] | CUI Y, HU X, LIANG G, et al. Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9 [J]. Plant Biotechnology Journal, 2020, 10.1111/pbi.13370. |
[56] | LV Y, SHAO G, JIAO G, et al. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351. |
[57] | MIAO C, WANG D, HE R, et al. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnology Journal, 2020, 18(2): 491-501. |
[58] | RAGHAVENDRA A S, GONUGUNTA V K, CHRISTMANN A, et al. ABA perception and signalling[J]. Trends in Plant Science, 2010, 15(7): 395-401. |
[59] | MIAO C, XIAO L, HUA K, et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 6 058-6 063. |
[60] | FIAZ S, AHMAD S, NOOR M A, et al. Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities[J]. International Journal of Molecular Sciences, 2019, doi: 10.3390/ijms20040888. |
[61] | ZHAO D S, LI Q F, ZHANG C Q, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1): 1 240. |
[62] | CAGAMPANG G B, PEREZ C M, JULIANO B O. A gel consistency test for eating quality of rice[J]. Journal of the Science of Food and Agriculture, 1973, 24(12): 1 589-1 594. |
[63] | SANO Y. Differential regulation of waxy gene expression in rice endosperm[J]. Theoretical and Applied Genetics, 1984, 68(5): 467-473. |
[64] | TIAN Z, QIAN Q, LIU Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21 765. |
[65] | FEI Y Y, YANG J, WANG F Q, et al. Production of two elite glutinous rice varieties by editing Wx gene[J]. Rice Science, 2019, 26(2): 118-124. |
[66] | XU Y, LIN Q, LI X, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[67] | HUANG L, LI Q, ZHANG C, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 164-2 166. |
[68] | ZENG D, LIU T, MA X, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 385-2 387. |
[69] | CHEN S, YANG Y, SHI W, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1 850-1 861. |
[70] | SHAO G N, XIE L H, JIAO G A, et al. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice[J]. Rice Science, 2017, 31(2): 216-222. |
[71] | ASHOKKUMAR S, JAGANATHAN D, RAMANATHAN V, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PLoS One, 2020, 15(8):0237018. |
[72] | TANG Y, ABDELRAHMAN M, LI J, et al. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice[J]. Plant Biotechnology Journal, 2020, doi: 10.1111/pbi.13514. |
[73] | SAVARY S, FICHE A, AUBERTOT J N, et al. Crop losses due to diseases and their implications for global food production losses and food security[J]. Food Security, 2012, 4(4): 519-537. |
[74] | 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报,2018,83(1):35-38. |
[75] | OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1 344-1 350. |
[76] | LI C, LI W, ZHOU Z, et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice[J]. Plant Biotechnology Journal, 2020, 18(2): 313-315. |
[77] | WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): 0154027. |
[78] | JIN M, JUN C, MIN W, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice[J]. Journal of Experimental Botany, 2018, (5): 5. |
[79] | NAWAZ G, USMAN B, PENG H, et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes, 2020, 11(7). |
[80] | AKBAR N, NADEEM, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[81] | SUN Y, ZHANG X, WU C, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant, 2016, 9(4): 628-631. |
[82] | LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016, 2: 16 139. |
[83] | LIU L, KUANG Y, YAN F, et al. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2[J]. Plant Biotechnology Journal, 2021, 19(1): 5-7. |
[84] | LIU S M, JIANG J, LIU Y, et al. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2): 88-97. |
[85] | LATA C, PRASAD M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of Experimental Botany, 2011, 62(14): 4 731-4 748. |
[86] | WANG B, ZHONG Z H, ZHANG H H, et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice[J]. Frontiers in Plant Science, 2019, 26(2): 98-108. |
[87] | 郭叔普. “杂交水稻之父”袁隆平院士谈我国两系法杂交水稻研究的形势与任务[J]. 安徽农业,1997(6):2. |
[88] | 邓鸿德,谭志军. 水稻无融合生殖研究现状及进展[J]. 世界农业,1992(9):21-23. |
[89] | OZIAS-AKINS P, VAN DIJK P J. Mendelian genetics of apomixis in plants[J]. Annual Review of Genetics, 2007, 41: 509-537. |
[90] | KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7 737): 91-95. |
[91] | MIEULET D, JOLIVET S, RIVARD M, et al. Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1 242-1 254. |
[92] | WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[93] | KELLIHER T, STARR D, Richbourg L, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction[J]. Nature, 2017, 542(7 639): 105-109. |
[94] | LIU C, LI X, MENG D, et al. A 4-bp Insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize[J]. Molecular Plant, 2017, 10(3): 520-522. |
[95] | LIU X, QIN R, LI J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnology Journal, 2020, 18(9): 1 845-1 847. |
[96] | KUANG Y, LI S, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular Plant, 2020, 13(4): 565-572. |
[97] | LOPEZ-MARQUES R L, NORREVANG A F, ACHE P, et al. Prospects for the accelerated improvement of the resilient crop quinoa[J]. Journal of Experimental Botany, 2020, 71(18): 5 333-5 347. |
[98] | YU H, LIN T, MENG X, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, doi: 10.1016/j.cell.2021.01.013. |
[99] | LIN Q, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, doi:10.1038/s41587-021-00868-w. |
[100] | LIU Q, JIAO X, MENG X, et al. FED: a web tool for foreign element detection of genome-edited organism[J]. Science China-Life Sciences, 2021, 64(1): 167-170. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||