[1] |
靳玉婷, 李先藩, 蔡影, 等. 秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响[J]. 环境科学, 2021, 42(8):3985-3996.
|
[2] |
王子阳, 陈婉华, 袁伟, 等. 长期秸秆还田与耕作方式对水稻产量及品质的影响[J]. 中国稻米, 2021, 27(3):17-20.
|
[3] |
刘月月, 郑浣彤, 程兆伟, 等. 秸秆还田与氮肥运筹对东北粳稻产量及稻米品质的影响[J]. 中国稻米, 2021, 27(6):20-27.
|
[4] |
HUANG R, LAN M L, LIU J, et al. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning[J]. Environmental Science and Pollution Research, 2017, 24(36): 27 942-27 952.
|
[5] |
WANG W, CHEN C L, WU X H, et al. Effects of reduced chemical fertilizer combined with straw retention on greenhousegas budget and crop production in double rice fields[J]. Biology and Fertility of Soils, 2019, 55: 89-96.
|
[6] |
高晶霞, 高昱, 牛勇琴, 等. 不同作物秸秆腐解对连作辣椒生长及根际环境的影响[J]. 西北农业学报, 2021, 30(8):1220-1 226.
|
[7] |
WANG B, SHEN X, CHEN S, et al. Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: A comprehensive evaluation[J]. Ecological Indicators, 2018, 93: 998-1 004.
|
[8] |
WANG W, LAI D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16.
|
[9] |
WU X H, WANG W, XIE K J, et al. Combined effects of straw and water management on CH4 emissions from rice fields[J]. Journal of Environmental Management, 2019, 231: 1 257-1 262.
|
[10] |
朱维, 刘代欢, 戴青云, 等. 秸秆还田对土壤-水稻系统中Cd迁移富集影响研究进展[J]. 中国农学通报, 2018, 34(30):90-95.
|
[11] |
隋阳辉, 高继平, 刘彩虹, 等. 东北冷凉地区秸秆还田方式对水稻光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018(5):137-143.
|
[12] |
高星爱, 王鑫, 解娇, 等. 低温秸秆降解复合微生物菌剂的研究进展[J]. 生物技术通报, 2020, 36(4):144-150.
|
[13] |
田村真紀夫. 寒さ大好き、ニッチな菌を追う[J]. 環境淨化技術, 2018, 17(3): 97-104.
|
[14] |
LEE J J, CHO Y J, YANG J Y, et al. Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica[J]. Journal of Biotechnology, 2017, 259: 15-18.
|
[15] |
BAJAJ S, SINGH D K. Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: Mini review[J]. International Biodeterioration & Biodegradation, 2015, 100: 98-105.
|
[16] |
张鑫, 青格尔, 高聚林, 等. 玉米秸秆低温降解复合菌的筛选及其菌种组成[J]. 农业环境科学学报, 2021, 40(7):1565-1 574.
|
[17] |
关法春, 刘亮, 苗彦军, 等. 低温菌对冬季水稻秸秆发酵腐解特性的影响[J]. 西南民族大学学报(自然科学版), 2019, 45(4):338-342.
|
[18] |
孙建平, 刘雅辉, 马佳, 等. 冀东稻区基于低温复合菌系HT20的秸秆腐解因素研究[J]. 西北农业学报, 2021, 30(9):1418-1 426.
|
[19] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000:56-107.
|
[20] |
石琳, 金梦灿, 单旭东, 等. 不同形态氮素对玉米秸秆腐解与养分释放的影响[J]. 农业资源与环境学报, 2021, 38(2):277-285.
|
[21] |
李泽媛, 郑军. 我国农作物秸秆还田的研究脉络和趋势探析——基于CiteSpace知识图谱[J]. 中国农业资源与区划, 2021, 42(9):16-26.
|
[22] |
WANG N, YUA J G, ZHAO Y H, et al. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddysoils: Changes in microbial community[J]. Ecology Environment, 2018, 174: 171-179.
|
[23] |
ZHAO J, NI T, XUN W B, et al. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system[J]. Applied Microbiology and Biotechnology, 2017, 101(11): 4 761-4 773.
|
[24] |
吴晶晶, 张斯梅, 顾东祥, 等. 稻麦周年不同秸秆还田方式对水稻产量及品质的影响[J]. 中国稻米, 2021, 27(5):79-83.
|
[25] |
王景, 陈曦, 魏俊岭. 水稻秸秆和玉米秸秆在好气和厌氧条件下的腐解规律[J]. 农业资源与环境学报, 2017, 34(1):59-65.
|
[26] |
姚云柯. 促腐菌对水稻稻秆腐解的影响及其机理[D]. 北京: 中国农业科学院, 2021.
|
[27] |
SU P, BROOKES P C, HE Y, et al. An evaluation of a microbial inoculum in promoting organic C decomposition in a paddy soil following straw incorporation[J]. Journal of Soils and Sediments, 2016, 16: 1 776-1 786.
|
[28] |
纪程, 孙玉香, 孟圆, 等. 稻麦轮作体系长期秸秆还田对土壤真菌群落结构及秸秆降解潜力的影响[J]. 农业环境科学学报, 2021, 41(4):819-825.
|
[29] |
GE Z, LI S Y, BOL R, et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition[J]. Soil and Tillage Research, 2021, https://doi.org/10.1016/j.still.2021.105120.
|
[30] |
WANG X, WANG X X, GENG P, et al. Effects of different returning method combined with decomposer on decomposion of organic components of straw and soil fertility[J]. Scientific Reports, 2021, 11(1): 15 495-15 495.
|