China Rice ›› 2023, Vol. 29 ›› Issue (2): 18-23.DOI: 10.3969/j.issn.1006-8082.2023.02.004
• Special Thesis & Basic Research • Previous Articles Next Articles
ZHANG Xingyu(), WANG Jun, ZHOU Zhou, ZHOU Shenqi, LIU Lijun(
)
Received:
2022-10-17
Online:
2023-03-20
Published:
2023-03-14
Contact:
*ljliu@yzu.edu.cn
About author:
lemon_zxy@sina.cn
通讯作者:
*ljliu@yzu.edu.cn
作者简介:
lemon_zxy@sina.cn
基金资助:
CLC Number:
ZHANG Xingyu, WANG Jun, ZHOU Zhou, ZHOU Shenqi, LIU Lijun. Research Progress in the Effects of Biochar Input on Paddy Soil Physicochemical Properties, Greenhouse Gas Emissions and Rice Yield[J]. China Rice, 2023, 29(2): 18-23.
张杏雨, 王俊, 周舟, 周沈琪, 刘立军. 生物质炭输入对稻田土壤理化特性和温室气体排放及水稻产量影响研究进展[J]. 中国稻米, 2023, 29(2): 18-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2023.02.004
[1] | 毕于运, 高春雨, 王亚静, 等. 中国秸秆资源数量估算[J]. 农业工程学报, 2009, 25(12):211-217. |
[2] | 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5):1-21. |
[3] | VITALE D, BILANCIA M. Role of the natural and anthropogenic radiative forcings on global warming: evidence from cointegration-VECM analysis[J]. Environmental and Ecological Statistics, 2013, 20(3): 413-444. |
[4] | 桑文秀, 杨华蕾, 唐剑武. 不同土地利用类型土壤温室气体排放对温湿度的响应[J]. 华东师范大学学报(自然科学版), 2021(4):1-12. |
[5] | BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis[J]. Global Change Biology Bioenergy, 2013, 5(2): 202-214. |
[6] | STAVI I, LAL R. Agroforestry and biochar to offset climate change: a review[J]. Agronomy for Sustainable Development, 2013, 33(1): 81-96. |
[7] | DAI L, LI H, TAN F, et al. Biochar: A potential route for recycling of phosphorus in agricultural residues[J]. Global Change Biology Bioenergy, 2016, 8(5): 852-858. |
[8] | LU H, BIAN R, XIA X, et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial[J/OL]. Geoderma, 2020, 376: 114 567. |
[9] | XU W H, WHITMAN W B, GUNDALE M J, et al. Functional response of the soil microbial community to biochar applications[J]. Global Change Biology Bioenergy, 2020, 13(1): 269-281. |
[10] | 张斌, 刘晓雨, 潘根兴, 等. 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J]. 中国农业科学, 2012, 45(23):4844-4 853. |
[11] | 李松, 李海丽, 方晓波, 等. 生物质炭输入减少稻田痕量温室气体排放[J]. 农业工程学报, 2014, 30(21):234-240. |
[12] | ZHANG A, BIAN R, PAN G, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153-160. |
[13] | 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5):1505-1 516. |
[14] | 宋燕凤, 张前前, 吴震, 等. 田间陈化生物质炭提高稻田土壤团聚体稳定性和磷素利用率[J]. 植物营养与肥料学报, 2020, 26(4):613-621. |
[15] |
CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2): 716-723.
PMID |
[16] | 董达. 生物质炭对水稻生长与稻田甲烷排放效应的影响及其机理研究[D]. 杭州: 浙江大学, 2015. |
[17] | 张爱平, 刘汝亮, 高霁, 等. 生物炭对灌淤土氮素流失及水稻产量的影响[J]. 农业环境科学学报, 2014, 33(12):2395-2 403. |
[18] | 张继宁, 周胜, 李广南, 等. 秸秆生物炭对水稻生长及滩涂土壤化学性质的影响[J]. 农业资源与环境学报, 2018, 35(6):492-499. |
[19] | GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems & Environment, 2015, 206: 46-59. |
[20] | CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Effect of biochar on chemical properties of acidic soil[J]. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404. |
[21] | 刘恩科, 赵秉强, 李秀英, 等. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1):176-182. |
[22] | KOLTON M, HAREL Y M, PASTERNAK Z, et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants[J]. Applied and Environmental Microbiology, 2011, 77(14): 4 924-4 930. |
[23] | 周雅心, 王晓彤, 王广磊, 等. 炉渣与生物炭施加对稻田土壤细菌多样性及群落组成的影响[J]. 中国环境科学, 2020, 40(3):1213-1 223. |
[24] | 蒋雪洋, 张前前, 沈浩杰, 等. 生物质炭对稻田土壤团聚体稳定性和微生物群落的影响[J]. 土壤学报, 2021, 58(6):1564-1 573. |
[25] | 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1 118. |
[26] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1):36-46. |
[27] | LIU B T, LI H L, LI H B, et al. Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching[J]. Global Change Biology Bioenergy, 2021, 13(1): 257-268. |
[28] | 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8):1445-1 451. |
[29] | ZHANG Y K, CHEN H Z, JI G M, et al. Effect of rice-straw biochar application on rice (Oryza sativa) root growth and nitrogen utilization in acidified paddy soil[J]. International Journal of Agriculture and Biology, 2018, 20(11): 2 529-2 536. |
[30] |
EYKELBOSH A J, JOHNSON M S, COUTO E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil[J]. Journal of Environmental Management, 2015, 149: 9-16.
PMID |
[31] | 刘玉学, 王耀锋, 吕豪豪, 等. 生物质炭化还田对稻田温室气体排放及土壤理化性质的影响[J]. 应用生态学报, 2013, 24(8):2166-2 172. |
[32] | 尹小红, 陈佳娜, 雷涛, 等. 生物炭对土壤化学性质及水稻苗期生长的影响[J]. 中国稻米, 2021, 27(5):90-92. |
[33] | 周劲松, 闫平, 张伟明, 等. 生物炭对水稻苗期生长、养分吸收及土壤矿质元素含量的影响[J]. 生态学杂志, 2016, 35(11):2952-2 959. |
[34] | 杨青川, 艾玉廷, 鲁建承, 等. 生物炭对水稻茎秆抗倒性的影响[J]. 沈阳农业大学学报, 2021, 52(1):1-7. |
[35] | 苗智英, 邵光成, 房凯, 等. 不同水炭处理对水稻抗倒伏能力及产量的影响[J]. 排灌机械工程学报, 2021, 39(2):193-199. |
[36] | ZHANG S G, YANG Y C, ZHAI W W, et al. Controlled-release nitrogen fertilizer improved lodging resistance and potassium and silicon uptake of direct-seeded rice[J]. Crop Science, 2019, 59(6): 2 733-2 740. |
[37] | ZHANG A F, BIAN R J, HUSSAIN Q, et al. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China[J]. Agriculture Ecosystems & Environment, 2013, 173: 37-45. |
[38] | 董林林, 何建桥, 陆长婴, 等. 生物质炭配施蚯蚓粪提升土壤有机碳对水稻生长的影响[J]. 中国土壤与肥料, 2021(2):87-95. |
[39] | JIN F, RAN C, ANWARI Q, et al. Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China[J]. Plant Soil and Environment, 2018, 64(12): 612-618. |
[40] | 张丰, 刘畅, 王喆, 等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报, 2021, 37(9):100-109. |
[41] | 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3):288-293. |
[42] | HUANG M, FAN L, JIANG L G, et al. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. Journal of Integrative Agriculture, 2019, 18(3): 563-570. |
[43] | YIN X H, CHEN J N, CAO F B, et al. Short-term application of biochar improves post-heading crop growth but reduces pre-heading biomass translocation in rice[J]. Plant Production Science, 2020, 23(4): 522-528. |
[44] | ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture Ecosystems & Environment, 2010, 139(4): 469-475. |
[45] | 张向前, 张玉虎, 赵远, 等. 不同裂解温度稻秆生物炭对土壤CH4、N2O排放影响分析[J]. 土壤通报, 2018, 49(3):630-639. |
[46] | AAMER M, HASSAN M U, SHAABAN M, et al. Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil[J/OL]. Journal of Saudi Chemical Society, 2021, 25(1): 13:101172. |
[47] | XIE Z B, XU Y P, LIU G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China[J]. Plant and Soil, 2013, 370(1-2): 527-540. |
[48] | 高俊莲, 王永生, 张爱平, 等. 生物质炭对稻田氮素淋失和氧化亚氮排放的影响[J]. 灌溉排水学报, 2017, 36(6):87-94. |
[49] | WANG J Y, ZHANG M, XIONG Z Q, et al. Effects of biochar addition on N2O and CO2 emissions from two paddy soils[J]. Biology and Fertility of Soils, 2011, 47(8): 887-896. |
[50] | SONG X Z, PAN G X, ZHANG C, et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis[J]. Ecosystem Health and Sustainability, 2016, 2(2): 11-24. |
[51] | HE Y H, ZHOU X H, JIANG L L, et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis[J]. Global Change Biology Bioenergy, 2017, 9(4): 743-755. |
[52] | QI L, POKHAREL P, CHANG S X, et al. Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable-rice rotation[J]. Agriculture Ecosystems & Environment, 2020, doi:10.1016/j.agce.2020.106831. |
[53] | FU L, LU Y, TANG L, et al. Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar[J]. Applied Soil Ecology, 2021, doi:10.1016/j.apsoil.2021.103892. |
[54] | LIU Q, LIU B J, AMBUS P, et al. Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system[J]. Global Change Biology Bioenergy, 2016, 8(1): 148-159. |
[55] |
SADASIVAM B Y, REDDY K R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars[J]. Journal of Environmental Management, 2015, 158: 11-23.
PMID |
[56] | FENG Y Z, XU Y P, YU Y C, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology & Biochemistry, 2012, 46: 80-88. |
[57] | WU Z, SONG Y F, SHEN H J, et al. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils[J]. Environmental Pollution, 2019, 253: 1 038-1 046. |
[58] | YI Q Q, LIANG B Q, NAN Q, et al. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment[J]. Science of the Total Environment, 2020, doi:10.1016/j.scitotenv.2020.137670. |
[59] | WU M X, FENG Q B, SUN X, et al. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil[J]. Scientific Reports, 2015, 5: 930-939. |
[60] | WANG C, SHEN J L, LIU J Y, et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study[J]. Soil Biology & Biochemistry, 2019, 135: 251-263. |
[61] | 吴震, 董玉兵, 熊正琴. 生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响[J]. 应用生态学报, 2018, 29(1):141-148. |
[62] | NAN Q, HU S L, QIN Y, et al. Methane oxidation activity inhibition via high amount aged biochar application in paddy soil[J]. The Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2021.: 149050. |
[63] | WANG C, LIU J Y, SHEN J L, et al. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment[J]. Agriculture Ecosystems & Environment, 2018, 262: 83-96. |
[64] | LI H, MENG J, LIU Z Q, et al. Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study[J/OL]. Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2021.147591. |
[65] | 汪勇, 吕茹洁, 黎星, 等. 生物炭与氮肥施用对双季稻田温室气体排放的影响[J]. 中国稻米, 2021, 27(1):20-26. |
[66] | 向伟, 王雷, 刘天奇, 等. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22):4634-4 645. |
[67] | LIU Q, ZHANG Y H, LIU B J, et al. How does biochar influence soil N cycle? A meta-analysis[J]. Plant and Soil, 2018, 426: 211-225. |
[68] | 马芸芸, 周伟, 何莉莉, 等. 秸秆生物质炭对稻田土壤剖面N2O和N2浓度的影响[J]. 土壤学报, 2021, 58(6):1540-1 551. |
[69] | NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288: 79-96. |
[70] |
MAO H, LV Z Y, SUN H D, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202.
PMID |
[71] | 宋旭. 生物炭施加对福州平原水稻田温室气体排放与养分动态的影响[D]. 福州: 福建师范大学, 2018. |
[72] | SHEN J L, TANG H, LIU J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture Ecosystems & Environment, 2014, 188: 264-274. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||