China Rice ›› 2025, Vol. 31 ›› Issue (1): 61-67.DOI: 10.3969/j.issn.1006-8082.2025.01.008
• Special Thesis & Basic Research • Previous Articles Next Articles
DUAN Junzhi(), YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei*(
)
Received:
2024-03-21
Online:
2025-01-20
Published:
2025-01-13
Contact:
ZHUO Wenfei
About author:
First author contact:1st author: junzhi2004@163.com
段俊枝(), 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞*(
)
通讯作者:
卓文飞
作者简介:
第一联系人:第一作者:junzhi2004@163.com
基金资助:
CLC Number:
DUAN Junzhi, YAN Zhaoling, QI Hongzhi, ZHANG Huifang, CHEN Haiyan, YANG Cuiping, WANG Nan, ZHUO Wenfei. Progress on Application of WRKY Transcription Factor in Rice Stress Tolerance Genetic Engineering[J]. China Rice, 2025, 31(1): 61-67.
段俊枝, 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞. WRKY转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2025, 31(1): 61-67.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.01.008
[1] | SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227. |
[2] | MANNA M, THAKUR T, CHIROM O, et al. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants[J]. Physiologia Plantarum, 2021, 172(2): 847-868. |
[3] | ERPEN L, DEVI H S, GROSSER J W, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell, Tissue and Organ Culture, 2018, 132(1): 1-25. |
[4] | JU Y L, YUE X F, MIN Z, et al. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 146: 98-111. |
[5] | REN C K, LI Z H, SONG P H, et al. Overexpression of a grape MYB transcription factor gene VhMYB2 increases salinity and drought tolerance in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2023, 24(13): 10 743. |
[6] | ZHANG L, XIANG Z P, LI J F, et al. bHLH57 confers chilling tolerance and grain yield improvement in rice[J]. Plant, Cell & Environment, 2023, 46(4): 1 402-1 418. |
[7] | KHAN F S, GOHER F, PAULSMEYER M N, et al. Calcium (Ca2+) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants[J]. Plant Biology, 2023, 25(7): 1 025-1 034. |
[8] | KIDOKORO S, WATANABE K, OHORI T, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. The Plant Journal, 2015, 81(3): 505-518. |
[9] | ZHANG Y, ZHOU Y Y, ZHANG D, et al. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar[J]. Environmental and Experimental Botany, 2020, 176: 104 117. |
[10] | JI Y, MOU M, ZHANG H, et al. GhWRKY33 negatively regulates jasmonate-mediated plant defense to Verticillium dahliae[J]. Plant Diversity, 2022, 45(3): 337-346. |
[11] | YU S J, YANG L Y, GAO K X, et al. Dioscorea composita WRKY5 positively regulates AtSOD1 and AtABF2 to enhance drought and salt tolerances[J]. Plant Cell Reports, 2023, 42(8): 1 365-1 378. |
[12] | WANG Y G, DONG B, WANG N N, et al. A WRKY transcription factor PmWRKY57 from Prunus mume improves cold tolerance in Arabidopsis thaliana[J]. Molecular Biotechnology, 2023, 65(8): 1 359-1 368. |
[13] | XING C H, CHEN Q M, QIAO Q H, et al. PbrWRKY70 increases pear (Pyrus bretschneideri Rehd) black spot disease tolerance by negatively regulating ethylene synthesis via PbrERF1B-2[J]. Plant Science, 2023, 334: 111 773. |
[14] | LKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5): 491-498. |
[15] | CHEN C H, CHEN Z X. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Molecular Biology, 2000, 42(2): 387-396. |
[16] | ZHANG Y J, WANG L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1): 1. |
[17] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[18] | ABDULLAH-ZAWAWI M R, AHMAD-NIZAMMUDDIN N F, GOVENDER N, et al. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice[J]. Scientific Reports, 2021, 11(1): 19 678. |
[19] | WU X L, SHIROTO Y, KISHITANI S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1): 21-30. |
[20] | LEE H, CHA J, CHOI C, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 2018, 11(1): 5. |
[21] | SHEN H S, LIU C T, ZHANG Y, et al. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Molecular Biology, 2012, 80(3): 241-253. |
[22] | RAINERI J, WANG S H, PELEG Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4): 401-413. |
[23] | YANG Z, CHI X Y, GUO F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum[J]. Journal of Plant Physiology, 2020, 246/247: 153 142. |
[24] | WU M, ZHANG K M, XU Y Z, et al. The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2022, 170: 180-191. |
[25] | HUANG K, WU T, MA Z M, et al. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth[J]. International Journal of Molecular Sciences, 2021, 22(9): 4 337. |
[26] | SONG G, SON S, LEE K S, et al. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice[J]. Plants, 2022, 11(15): 1 938. |
[27] | LIM C, KANG K, SHIM Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022, 188(4): 1 900-1 916. |
[28] | ZHOU S, ZHENG W J, LIU B H, et al. Characterizing the role of TaWRKY13 in salt tolerance[J]. International Journal of Molecular Sciences, 2019, 20(22): 5 712. |
[29] | HUANG S Z, HU L J, ZHANG S H, et al. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance[J]. International Journal of Molecular Sciences, 2021, 22(16): 8 625. |
[30] | ZHANG M X, ZHAO R R, WANG H T, et al. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice[J]. Plant Cell Reports, 2023, 42(2): 223-234. |
[31] | HUANG J J, LIU F H, CHAO D, et al. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(19): 11 999. |
[32] | BO C, CHEN H W, LUO G W, et al. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice[J]. Plant Cell Reports, 2020, 39(1): 135-148. |
[33] | HUANG Y M, CHEN F Q, CHAI M N, et al. Ectopic overexpression of pineapple transcription factor AcWRKY31 reduces drought and salt tolerance in rice and Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(11): 6 269. |
[34] | YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16): 5 085-5 097. |
[35] | ZHANG M X, ZHAO R R, HUANG K, et al. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice[J]. The Plant Journal, 2022, 112(2): 383-398. |
[36] | CHEN S Q, CAO H R, HUANG B L, et al. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J]. Plant, Cell & Environment, 2022, 45(7): 2 126-2 144. |
[37] | DAI X Y, WANG Y Y, ZHANG W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. Journal of Experimental Botany, 2016, 67(3): 947-960. |
[38] | LI G Z, WANG Z Q, YOKOSHO K, et al. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa)[J]. The New Phytologist, 2018, 219(1): 149-162. |
[39] | SHIMONO M, SUGANO S, NAKAYAMA A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 2007, 19(6): 2 064-2 076. |
[40] | ZHANG J, PENG Y L, GUO Z J. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Research, 2008, 18(4): 508-521. |
[41] | ABBRUSCATO P, NEPUSZ T, MIZZI L, et al. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast[J]. Molecular Plant Pathology, 2012, 13(8): 828-841. |
[42] | VO K T X, KIM C Y, HOANG T V, et al. OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice[J]. Frontiers in Plant Science, 2018, 8: 2 220. |
[43] | LIU Q, LI X, YAN S J, et al. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice[J]. BMC Plant Biology, 2018, 18(1): 257. |
[44] | WEI T, OU B, LI J B, et al. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance[J]. PLoS One, 2013, 8(3): e59720. |
[45] | CHOI N, IM J H, LEE E, et al. WRKY10 transcriptional regulatory cascades in rice are involved in basal defense and Xa1-mediated resistance[J]. Journal of Experimental Botany, 2020, 71(12): 3 735-3 748. |
[46] | CHUJO T, MIYAMOTO K, SHIMOGAWA T, et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus[J]. Plant Molecular Biology, 2013, 82(1): 23-37. |
[47] | LIU X Q, BAI X Q, WANG X J, et al. OsWRKY71, a rice transcription factor, is involved in rice defense response[J]. Journal of Plant Physiology, 2007, 164(8): 969-979. |
[48] | QIU D Y, XIAO J, DING X H, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-499. |
[49] | 邱德运. 水稻WRKY转录因子OsWRKY13的功能鉴定和调控机理研究[D]. 武汉: 华中农业大学, 2007. |
[50] | 朱峥, 王田幸子, 陈悦, 等. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5):1 129-1 140. |
[51] | XIE W Y, KE Y G, CAO J B, et al. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance[J]. Plant Physiology, 2021, 187(3): 1 746-1 761. |
[52] | PENG X X, HU Y J, TANG X K, et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1 485-1 498. |
[53] | WANG H H, MENG J, PENG X X, et al. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight[J]. Plant Molecular Biology, 2015, 89(1): 157-171. |
[54] | PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1): 63. |
[55] | HU L F, YE M, LI R, et al. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice[J]. Plant Signaling & Behavior, 2016, 11(4): e1169357. |
[56] | HUANGFU J Y, LI J C, LI R, et al. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 2016, 17(6): 697. |
[57] | 皇甫佳一. 转录因子OsWRKY45在调控水稻对于褐飞虱抗性中的作用与初步机理[D]. 杭州: 浙江大学, 2015. |
[58] | 昌鑫. OsWRKY70基因在水稻抗白叶枯病和褐飞虱中的初步功能解析[D]. 福州: 福建农林大学, 2022. |
[59] | WANG H H, HAO J J, CHEN X J, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Molecular Biology, 2007, 65(6): 799-815. |
[1] | DAI Shuaijun, ZHANG Yunbo, HUANG Liying. Research Progress on the Early Vigor of Cereal Crop [J]. China Rice, 2025, 31(1): 1-10. |
[2] | WEN Ya, GU Jiayi, WANG Chaorui, ZHANG Ying, XIAO Zhilin, ZHANG Hao. Research Progress on Nitrogen Fertilizer Management Techniques for High Yield and Emission Reduction in Rice Production and Their Impacts on Greenhouse Gas Emissions from Paddy Fields [J]. China Rice, 2025, 31(1): 11-17. |
[3] | HUANG Nanxun, ZHANG Minqiang, YE Qingsheng, ZHANG Congkun, LI Jianxiong, WANG Xinyu, FU Youqiang, LIANG Kaiming. Effects of Different Cultivation Techniques and Varieties on Grain Yield, Fertilizer Utilization and Indirect Carbon Footprint of Indica Rice in South China [J]. China Rice, 2025, 31(1): 18-26. |
[4] | LIU Qing, SUN Luhong, GAO Shiwei, LIU Yuqiang, CHANG Huilin, MA Cheng, WANG Jingze, WANG Cuiling, NIE Shoujun. Effects of Salicylic Acid on Growth and Physiological Characteristics in Different Drought Tolerance Rice Varieties under Drought Stress [J]. China Rice, 2025, 31(1): 27-34. |
[5] | LI Hu, WU Zishuai, LIU Guanglin, CHEN Chuanhua, LUO Qunchang, ZHU Qinan. Analysis of Variation Types of BADH2 Aroma Genes and Detection of Rice Blast Resistance Genes in 80 Aromatic Rice Materials [J]. China Rice, 2025, 31(1): 35-43. |
[6] | MAO Xiaohong, LI Yiyun, FU Linlin. Study on the Characteristics of Grain Production and the Countermeasures of Productivity Improvement in Zhejiang Province [J]. China Rice, 2025, 31(1): 44-53. |
[7] | YU Yanfeng, YUAN Tingting, YU Yongqi, SUN Mingzhu. Situation and High-quality Development Strategies of Jiangxi’s Grain Industry [J]. China Rice, 2025, 31(1): 54-60. |
[8] | LIU Youhong, TANG Ao, DONG Wenjun, MENG Ying, ZHANG Xijuan, LIU Kai, LENG Chunxu, SHANG Quanyu, LAI Yongcai. Evolution Rule of Major Agronomic Traits of Heilongjiang Japonica Rice at Different Breeding Stages [J]. China Rice, 2025, 31(1): 68-73. |
[9] | WANG Ying, MA Jiansen, WANG Fang, LIU Ruliang, HONG Yu, MAO Xinping. Screening and Evaluation of Nitrogen-Efficient Varieties of Rice in the Yellow Rive Irrigation Area [J]. China Rice, 2025, 31(1): 74-78. |
[10] | KANG Mintai, DU Xiaojing, ZHANG Yanhong, WEN Xiaorong, TANG Fusen, ZHAO Zhiqiang, YUAN Jie, WANG Fengbin. Principal Component Analysis and Comprehensive Evaluation of Salt Tolerance Related Traits in Japonica Rice in Xinjiang [J]. China Rice, 2025, 31(1): 79-83. |
[11] | QIN Yitian, WANG Zaiman, PAN Shenggang, ZHANG Minghua, MO Zhaowen. Comparison of Yield and Grain Quality among Different Fragrant Rice Varieties for Ratooning Rice Planting [J]. China Rice, 2025, 31(1): 84-88. |
[12] | SHEN Jianghua, XIAO Shan, ZHENG Wei, CHAI Weigang, YAO Hongyan. Study on the Effect of Sex-pheromone-trap Intelligent Monitoring of Chilo suppressalis [J]. China Rice, 2025, 31(1): 89-93. |
[13] | WU Huayu, WU Hongmiao, LI Zhong, WU Wenge. Development and Technical Points of the Side Deep Fertilization Technology for Rice Mechanical Transplanting [J]. China Rice, 2025, 31(1): 94-99. |
[14] | KANG Hongcan, LI Guosheng, WANG Jinyan, ZHANG Yi, DUAN Haoping, YIN Zhengqin, HE Rongman, CHUAN Xingkuan. Effects of Sowing Date on Fertility Transformation and Self-pollination Rate of Rice Dual-purpose Genic Male Sterile Lines [J]. China Rice, 2025, 31(1): 100-105. |
[15] | ZHANG Shaobo, ZHANG Jincheng. Exploration of Lateral Depth Variable Fertilization Technology for Rice in Cold Regions [J]. China Rice, 2025, 31(1): 106-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||