China Rice ›› 2025, Vol. 31 ›› Issue (5): 51-57.DOI: 10.3969/j.issn.1006-8082.2025.05.008
• Special Thesis & Basic Research • Previous Articles Next Articles
TANG Xinxin1,#(), ZHANG Zhouna2,#(
), XIAO Deshun1, CHEN Liping1, WANG Danying1, ZHU Yijun1, ZHANG Xiaoguo1, XU Chunmei1,*(
)
Received:
2025-05-14
Online:
2025-09-20
Published:
2025-09-11
Contact:
XU Chunmei
About author:
First author contact:#Co-first author: xxintang2022@163.com;
唐新鑫1,#(), 张舟娜2,#(
), 肖德顺1, 陈丽萍1, 王丹英1, 朱亦君1, 张晓果1, 徐春梅1,*(
)
通讯作者:
徐春梅
作者简介:
第一联系人:#共同第一作者:xxintang2022@163.com;
基金资助:
CLC Number:
TANG Xinxin, ZHANG Zhouna, XIAO Deshun, CHEN Liping, WANG Danying, ZHU Yijun, ZHANG Xiaoguo, XU Chunmei. Effects of Low Temperature and Insufficient Light during the Early Stage of Early Rice on Growth and Development and its Regulatory Techniques[J]. China Rice, 2025, 31(5): 51-57.
唐新鑫, 张舟娜, 肖德顺, 陈丽萍, 王丹英, 朱亦君, 张晓果, 徐春梅. 早稻前期低温寡照对生长发育的影响及调控技术[J]. 中国稻米, 2025, 31(5): 51-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.05.008
[1] | 国家统计局. 国家统计局关于2023年早稻产量数据的公告[EB/OL]. https://www.stats.gov.cn/sj/zxfb/202308/t20230823_1942209.html. |
[2] | WANG Z L, HU X, AI W H, et al. Microphysical characteristics of monsoon precipitation over yangtze-and-huai river basin and south China: A comparative study from GPM DPR observation[J]. Remote Sensing, 2024, 16(18):3 433. |
[3] | DAS H P. Agrometeorology in extreme events and natural disasters[R]. CRC PR INC, 2012. |
[4] | SIVAKUMAR M V K, MOTHA R P, DAS H P. Natural disasters and extreme events in agriculture[M]. Springer Berlin Heidelberg, 2005. |
[5] | 岳宏, 李春强, 蒋跃林. 2009—2011年气候异常对河北冬小麦生育影响分析[J]. 中国农学通报, 2012, 28(18):306-310. |
[6] | JI H T, XIAO L J, XIA Y M, et al. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J]. Agricultural and Forest Meteorology, 2017, 243:33-42. |
[7] | 周伟江, 吴旺嫔, 唐才宝, 等. 外源油菜素内酯对低温胁迫下水稻幼苗生长及生理特性的影响[J]. 西北农业学报, 2020, 29(9):1 410-1 416. |
[8] | 李健陵, 霍治国, 吴丽姬, 等. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014, 28(3):277-288. |
[9] | MA P, ZHOU L, LIAO X H, et al. Effects of low light after heading on the yield of direct seeding rice and its physiological response mechanism[J]. Plants Basel, 2023, 12(24):4 077. |
[10] | ZHANG Z Y, LI J J, PAN Y H, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nature Communications, 2017, 8:14 788. |
[11] | 周旭, 杨梯丰, 刘祖培, 等. 水稻低温发芽力的研究进展与展望[J]. 中国稻米, 2024, 30(5):41-48. |
[12] | LIU X G, XU H, ZHANG J Y, et al. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85[J]. Physiologia Plantarum, 2012, 145(3):384-394. |
[13] | SALA R G, WESTGATE M E, ANDRADE F H. Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize kernels[J]. Field Crops Research, 2007, 101(1):19-25. |
[14] | LI Q, DENG F, ZENG Y, et al. Low light stress increases chalkiness by disturbing starch synthesis and grain filling of rice[J]. International Journal of Molecular Sciences, 2022, 23(16):9 153. |
[15] | LEE J H. Screening methods for cold tolerance at crop experiment station phytotron and at Chuncheon[C]// Proceedings of the Rice Cold Tolerance Workshop, Los Banos, Philippines, 1979. |
[16] | 杨东, 段留生, 谢华安, 等. 水稻幼苗生长对弱光胁迫的响应及相关分析[J]. 中国农学通报, 2011, 27(5):70-79. |
[17] | 吴承杰, 冯镇南. 前期低温对水稻生育和产量形成的影响[J]. 农业气象, 1982(3):32-34. |
[18] | 李林, 张更生, 陈华. 阴害影响水稻产量的机制及其调控技术Ⅰ.水稻分蘖期间模拟阴害对产量形成的影响[J]. 中国农业气象, 1994, 15(2):28-32. |
[19] | 陈南凯. 光温条件对水稻生育及结实率的影响[J]. 植物生理学通讯, 1983(1):15-18. |
[20] | CHEN H, WANG T, GONG Z, et al. Low light conditions alter genome-wide profiles of circular RNAs in rice grains during grain filling[J]. Plants-Basel, 2022, 11(9):1 272. |
[21] | ALMEIDA D M, ALMADANIM M C, LOURENCO T, et al. Screening for abiotic stress tolerance in rice: Salt, cold, and drought[J]. Methods in Molecular Biology, 2016, 1398:155-182. |
[22] | ZHONG X H, PENG S B, SANICO A L, et al. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice[J]. Journal of Plant Nutrition, 2003, 26(6):1 203-1 222. |
[23] | PAYTON P, WEBB R, KORNYEYEV D, et al. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity[J]. Journal of Experimental Botany, 2001, 52(365):2 345-2 354. |
[24] | 王亚男, 范思静. 低温胁迫对水稻幼苗叶片生理生化特性的影响[J]. 安徽农业科学, 2017, 45(5):8-9. |
[25] | 朱莜芸. 弱光胁迫下钾肥运筹对水稻叶片光合特性及产量的影响[D]. 成都: 四川农业大学, 2023. |
[26] | 关思慧, 柴亚倩, 崔洪鑫, 等. 低温胁迫对2个石榴品种幼苗光合参数和生理特性的影响[J]. 果树学报, 2023, 40(5):946-958. |
[27] | 王成孜. 光照强度对超级稻和常规稻苗期光合特性影响的研究[D]. 南京: 南京农业大学, 2018. |
[28] | PRAUSE M, SCHULA H J, WAGLER D. Rechnergestützte Führung von Fermentationsprozessen. Teil 2[J]. Acta Biotechnologica, 1984, 4(2):143-151. |
[29] | ACHARD P, GONG F, CHEMINANT S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8):2 117-2 129. |
[30] | MARUYAMA K, URANO K, YOSHIWARA K, et al. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts[J]. Plant Physiology, 2014, 164(4):1 759-1 771. |
[31] | PENG X J, LIU H, WANG D, et al. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2[J]. BMC Genomics, 2016, 17(1):251. |
[32] | ZHANG Y, LAN H X, SHAO Q L, et al. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2016, 67(1):315-326. |
[33] | 徐青山, 黄晶, 孙爱军, 等. 低温影响水稻发育机理及调控途径研究进展[J]. 中国水稻科学, 2022, 36(2):118-130. |
[34] | WANG H, ZHONG L, FU X Q, et al. Physiological analysis reveals the mechanism of accelerated growth recovery for rice seedlings by nitrogen application after low temperature stress[J]. Frontiers in Plant Science, 2023, 14:1 133 592. |
[35] | HU X Z, CHEN G L, ZHANG R, et al. Multi-year QTL mapping and RNA-seq reveal candidate genes for early floret-opening time in japonica rice[J]. Agriculture-Basel, 2023, 13(4):859. |
[36] | KIM T, SAMRAJ S, JIMENEZ J, et al. Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce[J]. BMC Plant Biology, 2021, 21(1):185. |
[37] | MAHMOOD Q, AHMAD R, KWAK S S, et al. Ascorbate and glutathione: Protectors of plants in oxidative stress[M]. Springer Netherlands, 2010:209-229. |
[38] | ZHANG Q, CHEN Q, WANG S, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014, 7:24. |
[39] | 肖玉洁, 李泽明, 易鹏飞, 等. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12):1-9. |
[40] | LI M H, LI W, ZHAO M X, et al. Transcriptome analysis reveals a lncRNA-miRNA-mRNA regulatory network in OsRpp30-mediated disease resistance in rice[J]. BMC Genomics, 2023, 24(1):643. |
[41] | 滕祥勇, 王金明, 李鹏志, 等. 耐低温低氧水稻种质资源筛选[J]. 种子, 2022, 41(7):58-64. |
[42] | NAJEEB S, ALI J, MAHENDER A, et al. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice (Oryza sativa L.)[J]. Molecular Breeding: New Strategies in Plant Improvement, 2020, 40(1):10. |
[43] | FARZAD P, MOHAMMAD N, MOGHADAM H R T, et al. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars[J]. Journal of Biological Sciences, 2007, 7(6):841-847. |
[44] | 王珲, 钟蕾, 付晓全, 等. 低温胁迫后强反弹性生长型早稻材料的筛选[J]. 核农学报, 2023, 37(2):414-423. |
[45] | HONG Y, BOITI A, VALLONE D, et al. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution[J]. Antioxidants, 2024, 13(3):312. |
[46] | 赖日芳, 栗书莹, 岑振博, 等. 低温下不同香稻品种苗期的形态生理响应[J]. 中国稻米, 2019, 25(2):24-28. |
[47] | FUJINO K, SEKIGUCHI H, SATO T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2004, 108(5):794-799. |
[48] | DUBOUZET J G, SAKUMA Y, ITO Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant Journal, 2003, 33(4):751-763. |
[49] | ZARKA D G, VOGEL J T, COOK D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature[J]. Plant Physiology, 2003, 133(2):910-918. |
[50] | ZHOU H B, LIU B, WEEKS D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research, 2014, 42(17):10 903-10 914. |
[51] | 唐双勤, 吴自明, 谭雪明, 等. 直播早籼稻品种芽期耐冷性鉴定研究[J]. 作物杂志, 2019(1):159-167. |
[52] | 朱克明, 张利民, 张建国. 水稻有机栽培密度试验[J]. 农业装备技术, 2003(1):26-27. |
[53] | 陈传华, 刘广林, 罗群昌, 等. 优质稻有机栽培肥料和种植密度试验[J]. 南方农业学报, 2011, 42(8):926-930. |
[54] | 高英. 不同种植密度对杂交水稻野香优莉丝生物学及产量性状影响试验分析[J]. 种子科技, 2024, 42(11):35-37. |
[55] | 王亚江, 葛梦婕, 颜希亭, 等. 光、氮及其互作对超级粳稻产量和物质生产特征的影响[J]. 作物学报, 2014, 40(1):154-165. |
[56] | CAO X C, WU L L, LU R H, et al. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency[J]. Irrigation Science, 2021, 39(2):235-249. |
[57] | 黎宇钦, 王平章, 黄必善, 等. 不同栽培方式和灌溉模式对水稻生长特性、产量和水分利用效率的影响[J]. 节水灌溉, 2024(8):11-16. |
[58] | DETMANN K C, ARAUJO W L, MARTINS S C V, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice[J]. New Phytologist, 2012, 196(3):752-762. |
[59] | ZHANG X H, TEIXEIRA D S J A, NIU M Y, et al. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves[J]. Scientific Reports, 2017, 7:42 165. |
[60] | 朱春权, 魏倩倩, 项兴佳, 等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8):2 016-2 027. |
[61] | DUAN E C, WANG Y H, LI X H, et al. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J]. The Plant Cell, 2019, 31(5):1 026-1 042. |
[62] | LEE T M, LUR H S, CHU C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels[J]. Plant, Cell and Environment, 1993, 16(5):481-490. |
[63] | XIANG H T, WANG T T, ZHENG D F, et al. ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar[J]. Brazilian Journal of Botany, 2017, 40(4):853-860. |
[64] | 应武, 骆乐谈, 阮松林, 等. 不同生物刺激剂对鲜食玉米产量和品质的影响[J]. 中国农学通报, 2020, 36(17):89-94. |
[65] | 孙晓, 尹皓婵, 张占田, 等. 海藻提取物对水稻产量及养分利用的影响[J]. 江苏农业科学, 2020, 48(16):100-103. |
[66] | LOTFI R, GHARAVI-KOUCHEBAGH P, KHOSHVAGHTI H. Biochemical and physiological responses of Brassica napus plants to humic acid under water stress[J]. Russian Journal of Plant Physiology, 2015, 62(4):480-486. |
[67] | 薛世川, 刘秀芬, 邓景华. 施用腐植酸复合肥对小麦抗旱防衰能力的影响及其机理[J]. 中国生态农业学报, 2006, 14(1):139-141. |
[68] | 周群生, 张书红, 樊志磊, 等. 腐殖酸和锌对水稻生长和产量的影响[J]. 肥料与健康, 2023, 50(3):27-29. |
[69] | 戴梅, 宫象辉, 丛蕾, 等. PGPR制剂研发现状与发展趋势[J]. 山东科学, 2006, 19(6):45-48. |
[70] | HASAN A, TABASSUM B, HASHIM M, et al. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review[J]. Bacteria, 2024, 3(2):59-75. |
[71] | 田婧, 李邵, 马宁, 等. 植物根际促生菌作用机理研究进展[J]. 安徽农业科学, 2016, 44(10):1-2. |
[72] | 康贻军, 胡健, 单君, 等. 两株解磷真菌的解磷能力及其解磷机理的初步研究[J]. 微生物学通报, 2006, 33(5):22-27. |
[73] | 王笑, 蔡剑, 周琴, 等. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展[J]. 中国农业科学, 2021, 54(11):2 287-2 301. |
[74] | 徐青山, 魏倩倩, 孔亚丽, 等. 低温锻炼提高水稻秧苗耐低温能力的生理和分子机制研究[J]. 核农学报, 2023, 37(10):2 099-2 106. |
[75] | 徐青山. 水稻基质育秧耐低温能力调控及机理研究[D]. 北京: 中国农业科学院, 2023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||