China Rice ›› 2025, Vol. 31 ›› Issue (2): 35-42.DOI: 10.3969/j.issn.1006-8082.2025.02.006
• Special Thesis & Basic Research • Previous Articles Next Articles
SHU Chenchen, ZHOU Tianyang, GU Yibiao, CUI Ruilong, LIU Chang, GU Junfei*()
Received:
2024-07-29
Online:
2025-03-20
Published:
2025-03-12
Contact:
GU Junfei
束晨晨, 周天阳, 顾逸彪, 崔瑞龙, 刘畅, 顾骏飞*()
通讯作者:
顾骏飞
基金资助:
CLC Number:
SHU Chenchen, ZHOU Tianyang, GU Yibiao, CUI Ruilong, LIU Chang, GU Junfei. Effects of Spraying Exogenous γ-aminobutyric Acid on Growth and Yield of Rice with Different Salt Tolerance under Salt Stress[J]. China Rice, 2025, 31(2): 35-42.
束晨晨, 周天阳, 顾逸彪, 崔瑞龙, 刘畅, 顾骏飞. 盐胁迫下喷施外源γ-氨基丁酸对不同耐盐性水稻生长及产量的影响[J]. 中国稻米, 2025, 31(2): 35-42.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2025.02.006
[1] | 国家统计局. 2022中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
[2] | 王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5):673-684. |
[3] | 张洪程, 胡雅杰, 杨建昌, 等. 中国特色水稻栽培学发展与展望[J]. 中国农业科学, 2021, 54(7):1 301-1 321. |
[4] | GARCIA-CAPARROS P, LAO T M. The effects of salt stress on ornamental plants and integrative cultivation practices[J]. Scientia Horticulturae, 2018, 240: 430-439. |
[5] | LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291. |
[6] | 顾逸彪, 颜佳倩, 薛张逸, 等. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023(2):67-76. |
[7] | MARYAM S, SASAN A, BATOOL H, et al. Diverse role of γ-aminobutyric acid in dynamic plant cell responses[J]. Plant Cell Reports, 2019, 38(8): 847-867. |
[8] | SIMON M, HILLEL F. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?[J]. Frontiers in Plant Science, 2015, 6: 419. |
[9] | ULLAH A, ALI I, NOOR J, et al. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential[J]. Frontiers in Plant Science, 2023, 13: 1 081 188. |
[10] | DABRAVOLSKI S A, ISAYENKOV S V. The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance[J]. Horticulturae, 2023, 9(2): 230. |
[11] | XU B, LONG Y, FENG X Y, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience[J]. Nature Communications, 2021, 12(1): 1 952. |
[12] | 罗黄颖, 高洪波, 夏庆平, 等. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J]. 中国农业科学, 2011, 44(4):753-761. |
[13] | 高洪波, 章铁军, 吕桂云, 等. NaCl胁迫下外源γ-氨基丁酸对黄瓜幼苗生长和活性氧代谢的影响[J]. 西北植物学报, 2007, 27(10):2 046-2 051. |
[14] | 周翔, 吴晓岚, 李云, 等. 盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系[J]. 应用与环境生物学报, 2005, 11(4):412-415. |
[15] | 张碧茹, 米俊珍, 赵宝平, 等. 外源γ-氨基丁酸缓解燕麦幼苗盐碱胁迫的生理效应[J]. 麦类作物学报, 2024, 44(2):222-229. |
[16] | 顾逸彪. 不同耐盐性水稻对盐胁迫的响应机制与调控机理研究[D]. 扬州: 扬州大学, 2023. |
[17] | 邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5):667-678. |
[18] | 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础[D]. 扬州: 扬州大学, 2017. |
[19] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006:221-224. |
[20] | 李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000:164-168. |
[21] | MA Y, WANG P, WANG M, et al. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress[J]. Food Chemistry, 2019, 270: 593-601. |
[22] | 褚光, 刘洁, 张耗, 等. 超级稻根系形态生理特征及其与产量形成的关系[J]. 作物学报, 2014, 40(5):850-858. |
[23] | 谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4):176-182. |
[24] | JIN Y, ZHI L L, TANG X, et al. The function of GABA in plant cell growth, development and stress response[J]. Phyton: International Journal of Experimental Botany, 2023, 92(8): 2 211-2 225. |
[25] | ALJUAID B S, ASHOUR H. Exogenous γ-aminobutyric acid (GABA) application mitigates salinity stress in maize plants[J]. Life, 2022, 12(11): 1 860. |
[26] | 沙汉景, 胡文成, 贾琰, 等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响[J]. 作物学报, 2017, 43(11):1 677-1 688. |
[27] | 贺江, 丁颖, 娄向弟, 等. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6):1 045-1 060. |
[28] | TAVAKKOLI E, FSTEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. Journal of Experimental Botany, 2011, 62(6): 2 189-2203. |
[29] | TAIBI K, TAIBI F, ABDERRAHIN L A, et al. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L[J]. South African Journal of Botany, 2016, 105: 306-312. |
[30] | XIANG L X, HU L P, XU W N, et al. Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress[J]. PLoS One, 2016, 11(10): e0164847. |
[31] | JIN X Q, LIU T, XU J J, et al. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis[J]. BMC Plant Biology, 2019, 19: 48. |
[32] | NAYYAR H, KAUR R, KAUR S, et al. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants[J]. Journal of Plant Growth Regulation, 2014, 33: 408-419. |
[33] | PODLESAKOVA K, UGENA L, SPICHAL L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. New Biotechnology, 2019, 48: 53-65. |
[34] | NAKASHIMA K, FUJITA Y, KATSURA K, et al. Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis[J]. Plant Molecular Biology, 2006, 60: 51-68. |
[35] | FUJITA Y, FUJITA M, SHINOZAKI K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants[J]. Journal of Plant Research, 2011, 124: 509-525. |
[36] | FUJII H, VERSLUES P E, ZHU J K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 485-494. |
[37] | XU Z J, WANG J C, ZHEN W T, et al. Abscisic acid alleviates harmful effect of saline-alkaline stress on tomato seedlings[J]. Plant Physiology and Biochemistry, 2022, 175: 58-67. |
[38] | WASZCAK C, CARMODY M, KANGASJARVI J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 2018, 69(1): 209-236. |
[39] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8):2 741-2 746. |
[40] | 陈鸿鹏, 谭晓风. 超氧化物歧化酶(SOD)研究综述[J]. 经济林研究, 2007, 25(1):59-65. |
[41] | 尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007, 23(1):105-110. |
[42] | CARILLO P. GABA shunt in durum wheat[J]. Frontiers in Plant Science, 2018, 9: 100. |
[43] | KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology, 2021, 325: 73-82. |
[44] | ANSARI M I, JALIL S U, ANSARI S A, et al. GABA shunt: A key-player in mitigation of ROS during stress[J]. Plant Growth Regulation, 2021, 94: 131-149. |
[45] | BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434. |
[46] | JI J, YUE J Y, XIE T T, et al. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: Involving in abscisic acid and ethylene-signalling pathways[J]. Planta, 2018, 248: 675-690. |
[47] | MORI I C, SCHROEDER J I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiology, 2004, 135(2): 702-708. |
[48] | SINGH R, PARIHAR P, SINGH S, et al. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives[J]. Redox Biology, 2017, 11: 213-218. |
[49] | VIRDI A S, SINGH S, SINGH P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins[J]. Frontiers in Plant Science, 2015, 6: 809. |
[50] | 高永生, 王锁民, 张承烈. 植物盐适应性调节机制的研究进展[J]. 草业学报, 2003, 12(2):1-6. |
[51] | 曹岩坡, 代鹏, 戴素英. 盐胁迫对芦笋幼苗生长和体内Na+, K+, Ca2+分布的影响[J]. 西南大学学报(自然科学版), 2014, 36(10):31-36. |
[52] | RAHMAN A, NAHAR K, HASANUZZAMAN M, et al. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings[J]. Frontiers in Plant Science, 2016, 7: 609. |
[1] | CHEN Pin, XU Chunchun, JI Long, CHEN Zhongdu, FANG Fuping. Analysis of China’s Rice Industry in 2024 and the Outlook for 2025 [J]. China Rice, 2025, 31(2): 1-5. |
[2] | HE Yuxin, YU Qingtao, TAN Yuanyuan, SHU Qingyao, LIU Naixin, LIU Zhen. Study on the Genomic Characteristics of SSR Markers Used for Rice Variety Differentiation in China [J]. China Rice, 2025, 31(2): 6-12. |
[3] | JIANG Disha, ZHANG Ye, YU Kaiwen, LI Sike, PAN Danjie, ZHANG Jiaojiao, LIU Xingquan, HU Hao. Research Progress on Cadmium Removal and High-Value Utilization Technologies for Post-Harvest Rice Grain [J]. China Rice, 2025, 31(2): 13-19. |
[4] | HUANG Shumei, YANG Hongyun, KONG Jie, WU Zheng. Rice Phosphorus Nutrition Diagnosis Method Based on Improved ShuffleNet V2 [J]. China Rice, 2025, 31(2): 20-28. |
[5] | WANG Hongtao. Research Progress on Processing Methods and Exploitation Applications of Germinated Brown Rice [J]. China Rice, 2025, 31(2): 29-34. |
[6] | FAN Zhongling, HONG Xiujie, JIN Jiayue, JIANG Zhao, LIU Deqiang, BI Shaojie, WANG Yanjie. Effects of Nitrogen Fertilizer Combined with Cellulose Nanocrystals By-products on Yield and Quality of Japonica Rice in Soda Saline-alkali Land [J]. China Rice, 2025, 31(2): 43-47. |
[7] | XIANG Jun, LUO Shuangyuan, ZHENG Huabin, WANG Weiqin, TANG Qiyuan. Effects of Nitrogen and Density Interaction on the Yield and Cadmium Content of Low Cadmium Uptake Single Season Late Rice Luoyou 2 [J]. China Rice, 2025, 31(2): 48-54. |
[8] | YE Lingfeng, WANG Kangkang, WANG Wu, WANG Jingjing, ZHANG Peng. Biological Characteristics and Genetic Diversity Evaluation of Weedy Rice in Jiangsu Reclamation Area [J]. China Rice, 2025, 31(2): 55-59. |
[9] | DONG Wei, LI Xiaolin, DENG Wei, KUI Limei, TU Jian, SHEN Xiqiong. Development Situation, Problem, and Straitegy for Rice Industry in Yunnan Province [J]. China Rice, 2025, 31(2): 60-63. |
[10] | CUI Shize, WU Di, YANG Xianli, CHEN Hua, YANG Chuanming, WANG Lizhi, WANG Yangyang, LI Jiangzhou, YIN Liyun, JIANG Shukun, ZHANG Xijuan. Study on the Ecological Adaptability of High-quality Japonica Rice from Heilongjiang Province in Rotation Mode of Tobacco Production Area in Yunnan Province [J]. China Rice, 2025, 31(2): 64-69. |
[11] | LIU Mao, ZHANG Lin, JIANG Peng, GUO xiaoyi, ZHENG Xuebin, ZHOU Xingbing, ZHU Yongchuan, GUO Changchun, TIAN Shaoping, XU Fuxian. Fertilizer Saving Application Technology for High Yield and Efficiency of Hybrid Medium Rice-Ratoon Rice in Winter Paddy Fields [J]. China Rice, 2025, 31(2): 70-75. |
[12] | TANG Wenxue, MA Zhongming, XUE Liang, LIAN Caiyun, WANG Zhiqi, LUO Shuanglong. Effects of Irrigation Amount and Planting Density on Yield and Water Use Efficiency of Rice under Film Mulching Drip Irrigation in Hexi Irrigation District [J]. China Rice, 2025, 31(2): 76-82. |
[13] | HU Jijie, YE Kai, JIANG Qi, HE Bingqing, CHEN Shaojie, CHEN Zhixin, ZHANG Zhiyuan. Study on the Adaptability of Yongyou Series Indica-Japonica Hybrid Rice as Ratoon Rice in Eastern Zhejiang [J]. China Rice, 2025, 31(2): 83-86. |
[14] | SHAO Meihong, JIN Shuifeng, ZHAO Lingling, WANG Guorong, WANG Yun, LIANG Mengqi, ZHANG Yilin, HUANG Shiwen. Effects of Sun-drying and Chemical Soaking of Seeds on Rice Seed Germination and the Control of Bakanae Disease [J]. China Rice, 2025, 31(2): 87-91. |
[15] | YAO Xiangbin, ZHANG YingYing, LUO Haowen, WEI Jianjiao, QI JianYing, TANG Xiangru, DUAN Meiyang. Effects of Different Storage, Processing and Extraction Methods on the Content of 2-acetyl-1-pyrroline in Fragrant Rice [J]. China Rice, 2025, 31(2): 92-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||