中国稻米 ›› 2023, Vol. 29 ›› Issue (2): 18-23.DOI: 10.3969/j.issn.1006-8082.2023.02.004
收稿日期:
2022-10-17
出版日期:
2023-03-20
发布日期:
2023-03-14
通讯作者:
*ljliu@yzu.edu.cn
作者简介:
lemon_zxy@sina.cn
基金资助:
ZHANG Xingyu(), WANG Jun, ZHOU Zhou, ZHOU Shenqi, LIU Lijun(
)
Received:
2022-10-17
Online:
2023-03-20
Published:
2023-03-14
Contact:
*ljliu@yzu.edu.cn
About author:
lemon_zxy@sina.cn
摘要:
水稻是我国最主要的粮食作物,稻田也是温室气体甲烷和氧化亚氮的主要排放源。生物质炭因其具有较强的稳定性、吸附性和pH值高等特性,在改良土壤、提高作物产量等领域得到广泛应用。同时,生物质炭能够对稻田土壤微生物产生影响,直接或间接影响稻田温室气体的排放。本文总结了生物质炭对稻田土壤理化特性、温室气体排放及水稻产量的影响,提出了未来的研究方向,以期为水稻的高效生产及稻田温室气体减排提供理论与实践依据。
中图分类号:
张杏雨, 王俊, 周舟, 周沈琪, 刘立军. 生物质炭输入对稻田土壤理化特性和温室气体排放及水稻产量影响研究进展[J]. 中国稻米, 2023, 29(2): 18-23.
ZHANG Xingyu, WANG Jun, ZHOU Zhou, ZHOU Shenqi, LIU Lijun. Research Progress in the Effects of Biochar Input on Paddy Soil Physicochemical Properties, Greenhouse Gas Emissions and Rice Yield[J]. China Rice, 2023, 29(2): 18-23.
[1] | 毕于运, 高春雨, 王亚静, 等. 中国秸秆资源数量估算[J]. 农业工程学报, 2009, 25(12):211-217. |
[2] | 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5):1-21. |
[3] | VITALE D, BILANCIA M. Role of the natural and anthropogenic radiative forcings on global warming: evidence from cointegration-VECM analysis[J]. Environmental and Ecological Statistics, 2013, 20(3): 413-444. |
[4] | 桑文秀, 杨华蕾, 唐剑武. 不同土地利用类型土壤温室气体排放对温湿度的响应[J]. 华东师范大学学报(自然科学版), 2021(4):1-12. |
[5] | BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis[J]. Global Change Biology Bioenergy, 2013, 5(2): 202-214. |
[6] | STAVI I, LAL R. Agroforestry and biochar to offset climate change: a review[J]. Agronomy for Sustainable Development, 2013, 33(1): 81-96. |
[7] | DAI L, LI H, TAN F, et al. Biochar: A potential route for recycling of phosphorus in agricultural residues[J]. Global Change Biology Bioenergy, 2016, 8(5): 852-858. |
[8] | LU H, BIAN R, XIA X, et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial[J/OL]. Geoderma, 2020, 376: 114 567. |
[9] | XU W H, WHITMAN W B, GUNDALE M J, et al. Functional response of the soil microbial community to biochar applications[J]. Global Change Biology Bioenergy, 2020, 13(1): 269-281. |
[10] | 张斌, 刘晓雨, 潘根兴, 等. 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J]. 中国农业科学, 2012, 45(23):4844-4 853. |
[11] | 李松, 李海丽, 方晓波, 等. 生物质炭输入减少稻田痕量温室气体排放[J]. 农业工程学报, 2014, 30(21):234-240. |
[12] | ZHANG A, BIAN R, PAN G, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153-160. |
[13] | 朱孟涛, 刘秀霞, 王佳盟, 等. 生物质炭对水稻土团聚体微生物多样性的影响[J]. 生态学报, 2020, 40(5):1505-1 516. |
[14] | 宋燕凤, 张前前, 吴震, 等. 田间陈化生物质炭提高稻田土壤团聚体稳定性和磷素利用率[J]. 植物营养与肥料学报, 2020, 26(4):613-621. |
[15] |
CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2): 716-723.
PMID |
[16] | 董达. 生物质炭对水稻生长与稻田甲烷排放效应的影响及其机理研究[D]. 杭州: 浙江大学, 2015. |
[17] | 张爱平, 刘汝亮, 高霁, 等. 生物炭对灌淤土氮素流失及水稻产量的影响[J]. 农业环境科学学报, 2014, 33(12):2395-2 403. |
[18] | 张继宁, 周胜, 李广南, 等. 秸秆生物炭对水稻生长及滩涂土壤化学性质的影响[J]. 农业资源与环境学报, 2018, 35(6):492-499. |
[19] | GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems & Environment, 2015, 206: 46-59. |
[20] | CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Effect of biochar on chemical properties of acidic soil[J]. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404. |
[21] | 刘恩科, 赵秉强, 李秀英, 等. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1):176-182. |
[22] | KOLTON M, HAREL Y M, PASTERNAK Z, et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants[J]. Applied and Environmental Microbiology, 2011, 77(14): 4 924-4 930. |
[23] | 周雅心, 王晓彤, 王广磊, 等. 炉渣与生物炭施加对稻田土壤细菌多样性及群落组成的影响[J]. 中国环境科学, 2020, 40(3):1213-1 223. |
[24] | 蒋雪洋, 张前前, 沈浩杰, 等. 生物质炭对稻田土壤团聚体稳定性和微生物群落的影响[J]. 土壤学报, 2021, 58(6):1564-1 573. |
[25] | 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1 118. |
[26] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1):36-46. |
[27] | LIU B T, LI H L, LI H B, et al. Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching[J]. Global Change Biology Bioenergy, 2021, 13(1): 257-268. |
[28] | 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8):1445-1 451. |
[29] | ZHANG Y K, CHEN H Z, JI G M, et al. Effect of rice-straw biochar application on rice (Oryza sativa) root growth and nitrogen utilization in acidified paddy soil[J]. International Journal of Agriculture and Biology, 2018, 20(11): 2 529-2 536. |
[30] |
EYKELBOSH A J, JOHNSON M S, COUTO E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil[J]. Journal of Environmental Management, 2015, 149: 9-16.
PMID |
[31] | 刘玉学, 王耀锋, 吕豪豪, 等. 生物质炭化还田对稻田温室气体排放及土壤理化性质的影响[J]. 应用生态学报, 2013, 24(8):2166-2 172. |
[32] | 尹小红, 陈佳娜, 雷涛, 等. 生物炭对土壤化学性质及水稻苗期生长的影响[J]. 中国稻米, 2021, 27(5):90-92. |
[33] | 周劲松, 闫平, 张伟明, 等. 生物炭对水稻苗期生长、养分吸收及土壤矿质元素含量的影响[J]. 生态学杂志, 2016, 35(11):2952-2 959. |
[34] | 杨青川, 艾玉廷, 鲁建承, 等. 生物炭对水稻茎秆抗倒性的影响[J]. 沈阳农业大学学报, 2021, 52(1):1-7. |
[35] | 苗智英, 邵光成, 房凯, 等. 不同水炭处理对水稻抗倒伏能力及产量的影响[J]. 排灌机械工程学报, 2021, 39(2):193-199. |
[36] | ZHANG S G, YANG Y C, ZHAI W W, et al. Controlled-release nitrogen fertilizer improved lodging resistance and potassium and silicon uptake of direct-seeded rice[J]. Crop Science, 2019, 59(6): 2 733-2 740. |
[37] | ZHANG A F, BIAN R J, HUSSAIN Q, et al. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China[J]. Agriculture Ecosystems & Environment, 2013, 173: 37-45. |
[38] | 董林林, 何建桥, 陆长婴, 等. 生物质炭配施蚯蚓粪提升土壤有机碳对水稻生长的影响[J]. 中国土壤与肥料, 2021(2):87-95. |
[39] | JIN F, RAN C, ANWARI Q, et al. Effects of biochar on sodium ion accumulation, yield and quality of rice in saline-sodic soil of the west of Songnen plain, northeast China[J]. Plant Soil and Environment, 2018, 64(12): 612-618. |
[40] | 张丰, 刘畅, 王喆, 等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报, 2021, 37(9):100-109. |
[41] | 曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3):288-293. |
[42] | HUANG M, FAN L, JIANG L G, et al. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. Journal of Integrative Agriculture, 2019, 18(3): 563-570. |
[43] | YIN X H, CHEN J N, CAO F B, et al. Short-term application of biochar improves post-heading crop growth but reduces pre-heading biomass translocation in rice[J]. Plant Production Science, 2020, 23(4): 522-528. |
[44] | ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture Ecosystems & Environment, 2010, 139(4): 469-475. |
[45] | 张向前, 张玉虎, 赵远, 等. 不同裂解温度稻秆生物炭对土壤CH4、N2O排放影响分析[J]. 土壤通报, 2018, 49(3):630-639. |
[46] | AAMER M, HASSAN M U, SHAABAN M, et al. Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil[J/OL]. Journal of Saudi Chemical Society, 2021, 25(1): 13:101172. |
[47] | XIE Z B, XU Y P, LIU G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China[J]. Plant and Soil, 2013, 370(1-2): 527-540. |
[48] | 高俊莲, 王永生, 张爱平, 等. 生物质炭对稻田氮素淋失和氧化亚氮排放的影响[J]. 灌溉排水学报, 2017, 36(6):87-94. |
[49] | WANG J Y, ZHANG M, XIONG Z Q, et al. Effects of biochar addition on N2O and CO2 emissions from two paddy soils[J]. Biology and Fertility of Soils, 2011, 47(8): 887-896. |
[50] | SONG X Z, PAN G X, ZHANG C, et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis[J]. Ecosystem Health and Sustainability, 2016, 2(2): 11-24. |
[51] | HE Y H, ZHOU X H, JIANG L L, et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis[J]. Global Change Biology Bioenergy, 2017, 9(4): 743-755. |
[52] | QI L, POKHAREL P, CHANG S X, et al. Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable-rice rotation[J]. Agriculture Ecosystems & Environment, 2020, doi:10.1016/j.agce.2020.106831. |
[53] | FU L, LU Y, TANG L, et al. Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar[J]. Applied Soil Ecology, 2021, doi:10.1016/j.apsoil.2021.103892. |
[54] | LIU Q, LIU B J, AMBUS P, et al. Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system[J]. Global Change Biology Bioenergy, 2016, 8(1): 148-159. |
[55] |
SADASIVAM B Y, REDDY K R. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars[J]. Journal of Environmental Management, 2015, 158: 11-23.
PMID |
[56] | FENG Y Z, XU Y P, YU Y C, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology & Biochemistry, 2012, 46: 80-88. |
[57] | WU Z, SONG Y F, SHEN H J, et al. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils[J]. Environmental Pollution, 2019, 253: 1 038-1 046. |
[58] | YI Q Q, LIANG B Q, NAN Q, et al. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment[J]. Science of the Total Environment, 2020, doi:10.1016/j.scitotenv.2020.137670. |
[59] | WU M X, FENG Q B, SUN X, et al. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil[J]. Scientific Reports, 2015, 5: 930-939. |
[60] | WANG C, SHEN J L, LIU J Y, et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study[J]. Soil Biology & Biochemistry, 2019, 135: 251-263. |
[61] | 吴震, 董玉兵, 熊正琴. 生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响[J]. 应用生态学报, 2018, 29(1):141-148. |
[62] | NAN Q, HU S L, QIN Y, et al. Methane oxidation activity inhibition via high amount aged biochar application in paddy soil[J]. The Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2021.: 149050. |
[63] | WANG C, LIU J Y, SHEN J L, et al. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment[J]. Agriculture Ecosystems & Environment, 2018, 262: 83-96. |
[64] | LI H, MENG J, LIU Z Q, et al. Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study[J/OL]. Science of the Total Environment, 2021, doi:10.1016/j.scitotenv.2021.147591. |
[65] | 汪勇, 吕茹洁, 黎星, 等. 生物炭与氮肥施用对双季稻田温室气体排放的影响[J]. 中国稻米, 2021, 27(1):20-26. |
[66] | 向伟, 王雷, 刘天奇, 等. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22):4634-4 645. |
[67] | LIU Q, ZHANG Y H, LIU B J, et al. How does biochar influence soil N cycle? A meta-analysis[J]. Plant and Soil, 2018, 426: 211-225. |
[68] | 马芸芸, 周伟, 何莉莉, 等. 秸秆生物质炭对稻田土壤剖面N2O和N2浓度的影响[J]. 土壤学报, 2021, 58(6):1540-1 551. |
[69] | NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288: 79-96. |
[70] |
MAO H, LV Z Y, SUN H D, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202.
PMID |
[71] | 宋旭. 生物炭施加对福州平原水稻田温室气体排放与养分动态的影响[D]. 福州: 福建师范大学, 2018. |
[72] | SHEN J L, TANG H, LIU J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems[J]. Agriculture Ecosystems & Environment, 2014, 188: 264-274. |
[1] | 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展[J]. 中国稻米, 2023, 29(4): 1-8. |
[2] | 胡江博, 任正鹏, 丁翔, 王朝全, 冯阳, 王笑见, 张翔, 胥南飞. 稻田除草剂应用现状与抗除草剂水稻育种研究进展[J]. 中国稻米, 2023, 29(4): 13-19. |
[3] | 王云翔, 咸云宇, 赵灿, 王维领, 霍中洋. 缓控释氮肥施用技术在水稻上应用研究进展与展望[J]. 中国稻米, 2023, 29(4): 20-26. |
[4] | 李逸翔, 周新桥, 陈达刚, 郭洁, 陈可, 张容郡, 饶刚顺, 刘传光, 陈友订. 高γ-氨基丁酸水稻及其米制食品开发应用研究进展[J]. 中国稻米, 2023, 29(4): 38-44. |
[5] | 薛莲, 段圣省, 郑兴飞, 殷得所, 董华林, 胡建林, 王红波, 查中萍, 郭英, 曹鹏, 徐得泽. 湖北省水稻生产发展现状及对策建议[J]. 中国稻米, 2023, 29(4): 45-47. |
[6] | 王昕, 刘炜, 马洪文, 贺奇, 冯伟东, 张益民, 李虹, 殷延勃. 宁夏优质稻育种历程、问题及展望[J]. 中国稻米, 2023, 29(4): 48-52. |
[7] | 孙志广, 刘艳, 李景芳, 周振玲, 邢运高, 徐波, 周群, 王德荣, 卢百关, 方兆伟, 王宝祥, 徐大勇. 水稻萌发耐淹性鉴定评价方法研究及种质资源筛选[J]. 中国稻米, 2023, 29(4): 53-58. |
[8] | 王兴为, 王志成. 秸秆还田与深施氮肥对水稻叶片生理特征、氮素利用及产量的影响[J]. 中国稻米, 2023, 29(4): 59-65. |
[9] | 赫兵, 李超, 严永峰, 刘月月, 赫靖淇, 于天华, 王帅, 陈殿元, 严光彬. 水稻秸秆秋季水耙浆还田对土壤及水稻性状的影响[J]. 中国稻米, 2023, 29(4): 66-71. |
[10] | 魏亮亮, 刘妁丹, 李敏, 王莹, 李颜朵, 赵泓博, 王楠. 改性稻秸生物质炭对水田土壤及水稻植株Cd2+的钝化效应[J]. 中国稻米, 2023, 29(4): 72-77. |
[11] | 董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析[J]. 中国稻米, 2023, 29(4): 84-89. |
[12] | 吴涛, 邓宏中, 赵迎曦, 杨琛, 郭昱, 赵有权, 谢志梅, 张立阳, 杨远柱. 隆平高科水稻绿色通道2016—2021年审定品种分析[J]. 中国稻米, 2023, 29(4): 90-94. |
[13] | 邵泽毅, 谭旭生, 伍斌, 管恩相. 稻田小龙虾轮捕轮放寄养技术浅析[J]. 中国稻米, 2023, 29(4): 98-100. |
[14] | 黄日伟, 廖春良, 梁月宽, 杨绍意, 尚子帅, 姚云峰. 华浙优261在广西不同海拔作早中晚稻种植表现及高产栽培技术[J]. 中国稻米, 2023, 29(4): 106-107. |
[15] | 郑红明, 郑品卉. 浅析稻谷比价偏低对我国水稻产业的影响[J]. 中国稻米, 2023, 29(4): 32-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||