中国稻米 ›› 2023, Vol. 29 ›› Issue (6): 10-15.DOI: 10.3969/j.issn.1006-8082.2023.06.003
崔元江1, 吕阳1, 胡海涛1, 吴世强2,*(), 郭龙彪1,*(
)
收稿日期:
2023-07-20
出版日期:
2023-11-20
发布日期:
2023-11-21
通讯作者:
*基金资助:
CUI Yuanjiang1, LV Yang1, HU Haitao1, WU Shiqiang2,*(), GUO Longbiao1,*(
)
Received:
2023-07-20
Online:
2023-11-20
Published:
2023-11-21
Contact:
*摘要:
综述了2020—2022年我国水稻分子生物学研究上的重要进展,简要比较了国内外的研究进展差异,提出了研究趋势和展望。近3年来,我国开发了水稻泛基因组、用于QTN聚合和育种路线优化的基因组导航系统RiceNavi,构建了目前植物中群体规模最大的、基因组充分注释的稻属超级泛基因组;鉴定到多个氮高效基因,研究了氮高效的分子机制,一些基因的表达可使实验条件下水稻产量大幅增加;在水稻广谱抗性、温度反应、抗盐碱耐逆机制研究上亦取得明显的进展;基因编辑上,建立了新型多核苷酸靶向删除系统AFIDs(APOBEC-Cas9 fusion-induced deletion systems),成功在水稻和小麦基因组中实现了精准、可预测的多核苷酸删除,利用 CRISPR/Cas9 技术,基因编辑出许多实用的新材料;新基因编辑的水稻无融合生殖材料Fix2 (Fixation of hybrids 2)结实率从原来的3.2%提高至82.0%;敲除水稻同源基因GS3/AT1的水稻材料田间能增产约22.4%。
中图分类号:
崔元江, 吕阳, 胡海涛, 吴世强, 郭龙彪. 近年我国水稻分子生物学研究进展[J]. 中国稻米, 2023, 29(6): 10-15.
CUI Yuanjiang, LV Yang, HU Haitao, WU Shiqiang, GUO Longbiao. Research Progress and Prospect in Molecular Biology of Rice in China in recent Years[J]. China Rice, 2023, 29(6): 10-15.
[1] | GAO M J, HE Y, YIN X, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell, 2021, 184(21): 5 391-5 404. |
[2] | ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251. |
[3] | LIN H, WANG M Y, CHEN Y, et al. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants[J]. Science Advance, 2022, 8(10): eabg8723. |
[4] | MATSUMOTO H, FAN X, WANG Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72. |
[5] | LI L L, ZHANG H H, YANG Z H, et al. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice[J]. Nature Communication, 2022, 13(1): 6 920. |
[6] | HU X H, SHEN S, WU J L, et al. A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens[J]. Nature Plants, 2023, 9(2): 228-237. |
[7] | ZHAN C H, LEI L, LIU Z X, et al. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance[J]. Nature Plants, 2020, 6(12): 1 447-1 454. |
[8] | XU G J, ZHONG X H, SHI Y L, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity[J]. Science Advance, 2020, 6(48): eabb7719. |
[9] | YANG C, LIU R, PANG J H, et al. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice[J]. Nature Communication, 2021, 12(1): 2 178. |
[10] | LIU Y, ZHANG X, YUAN G X, et al. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(44): e2110751118. |
[11] | LI G B, HE J X, WU J L, et al. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty[J]. Molecular Plant, 2022, 15(11): 1 790-1 806. |
[12] | MENG F W, ZHAO Q Q, ZHAO X, et al. A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance[J]. Cell Reporter, 2022, 39(11): 110 941. |
[13] | KAN Y, MU X R, ZHANG H, et al. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2022, 8(1): 53-67. |
[14] | ZHANG H, ZHOU J F, KAN Y, et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1 293-1 300. |
[15] | WANG J C, REN Y L, LIU X, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Molecular Plant, 2021, 14(2): 315-329. |
[16] | TANG J Q, TIAN X J, MEI E Y, et al. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels[J]. Plant Cell, 2022, 34(11): 4 495-4 515. |
[17] | XU Y F, ZHANG L, OU S J, et al. Natural variations of SLG1 confer high-temperature tolerance in indica rice[J]. Nature Communication, 2020, 11(1): 5 441. |
[18] | TANG Y, GAO C C, GAO Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental Cell, 2020, 53(3): 272-286. |
[19] | JIA M R, MENG X B, SONG X G, et al. Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice[J]. Cell Discovery, 2022, 8(1):71. |
[20] | GUO X Y, ZHANG D J, WANG Z L, et al. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice[J]. The EMBO Journal, 2023, 42(1): e110518. |
[21] | LI Z T, WANG B, LUO W, et al. Natural variation of codon repeats in COLD11 endows rice with chilling resilience[J]. Science Advance, 2023, 9(1): eabq5506. |
[22] | ZHANG H L, YU F F, XIE P, et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science, 2023, 379(6638): eade8416. |
[23] | SUN X M, XIONG H Y, JIANG C H, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communication, 2022, 13(1): 4 265. |
[24] | LV J, HUANG L Y, ZHANG S L, et al. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice[J]. Nature Communication, 2020, 11(1): 725. |
[25] | YIN W B, XIAO Y H, NIU M, et al. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice[J]. Plant Cell, 2020, 32(7): 2 292-2 306. |
[26] | WEI H, WANG X L, HE Y Q, et al. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis[J]. The EMBO Journal, 2021, 40(3): e105086. |
[27] | WANG L F, CAO S, WANG P T, et al. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance[J]. Proceedings of National Academy Sciences of the United States of America, 2021, 118(13): e2023981118. |
[28] | LI Q Q, XU F, CHEN Z, et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation[J]. Nature Plants, 2021, 7(8):1108-1 118. |
[29] | XIANG Y H, YU J J, LIAO B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice[J]. Molecular Plant, 2022, 15(12): 1 908-1 930. |
[30] | DENG P, JING W, CAO C Q, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase[J]. Proceedings of National Academy Sciences of the United States of America, 2022, 119(50): e2210338119. |
[31] | QIN P, LU H W, DU H L, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(13): 3 542-3 558. |
[32] | WEI X, QIU J, YONG K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding[J]. Nature Genetics, 2021, 53(2): 243-253. |
[33] | ZHANG F, XUE H Z, DONG X R, et al. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes[J]. Genome Research, 2022, 32(5): 853-863. |
[34] | ZHANG F, HU Z Q, WU Z C, et al. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: Cross-species two-dimensional GWAS reveals the underlying genetics[J]. Plant Cell, 2021, 33(8): 2 538-2 561. |
[35] | SHANG L Q, LI X X, HE H Y, et al. A super pan-genomic landscape of rice[J]. Cell Research, 2022, 32(10): 878-896. |
[36] | LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590(7847): 600-605. |
[37] | CAI S Y, ZHAO X, PITTELKOW C M, et al. Optimal nitrogen rate strategy for sustainable rice production in China[J]. Nature, 2023, 615(7950): 73-79. |
[38] | WU K, WANG S S, SONG W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367 (6478): 641. |
[39] | WEI S B, LI X, LU Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604): 386. |
[40] | ZHANG S, ZHANG Y Y, LI K N, et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice[J]. Current Biology, 2021, 31(4): 671-683. |
[41] | WANG Q, SU Q, NIAN J Q, et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant, 2021, 14(6): 1 012-1 023. |
[42] | ZHANG M X, WANG Y, CHEN X, et al. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communication, 2021, 12(1): 735. |
[43] | YANG H, LI Y F, CAO Y W, et al. Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation[J]. Nature Communication, 2022, 13(1): 485. |
[44] | HAN M L, LV Q Y, ZHANG J, et al. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of nitrate reductase 1.2 in rice[J]. Molecular Plant, 2022, 15(1): 167-178. |
[45] | KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7 737): 91-95. |
[46] | WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. |
[47] | WEI X, LIU C, CHEN X, et al. Synthetic apomixis with normal hybrid rice seed production[J]. Molecular Plant, 2023, 16(3): 489-492. |
[48] | VERNET A, MEYNARD D, LIAN Q C, et al. High-frequency synthetic apomixis in hybrid rice[J]. Nature Communication, 2022, 13(1): 7 963. |
[49] | SONG X G, MENG X B, GUO H Y, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 2022, 40(9): 1 403-1 411. |
[50] | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. |
[51] | LIN Q P, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, 39(8): 923-927. |
[52] | CHEN W K, CHEN L, ZHANG X, et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J]. Science, 2022, 375(6587): 1 372. |
[53] | XU F, TANG J Y, WANG S X, et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors[J]. Nature Genetics, 2022, 54(12): 1 972-1 982. |
[54] | MA B, ZHANG L, GAO Q F, et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals[J]. Nature Genetics, 2021, 53(6): 906-915. |
[55] | LI J, YOKOSHO K, LIAO H, et al. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice[J]. Nature Plants, 2020, 6(7): 848-859. |
[56] | SUN J, ZHANG G C, CUI Z B, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nature Communication, 2022, 13(1): 5 664. |
[57] | GUAN Z Y, ZHANG Q X, ZHANG Z F, et al. Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 - PHR2 complex[J]. Nature Communication, 2022, 13(1): 1 581. |
[58] | HUANG H J, WANG Y Z, LI L L, et al. Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses[J]. Nature Communication, 2023, 14(1): 737. |
[59] | LI H X, YOU C J, YOSHIKAWA M, et al. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding[J]. Cell Research, 2022, 32(10): 931-945. |
[60] | YU H, LIN T, MENG X B, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5): 1 156-1 170. |
[61] | GUTAKER R M, GROEN S C, BELLIS E S, et al. Genomic history and ecology of the geographic spread of rice[J]. Nature Plants, 2020, 6(5): 492-502. |
[62] | NAGAI K, MORI Y, ISHIKAWA S, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice[J]. Nature, 2020, 584(7819): 109-114. |
[63] | SHIN D, LEE S, KIM T H, et al. Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars[J]. Nature Communication, 2020, 11(1): 2 819. |
[1] | 占小登, 王凯, 曹立勇. 近年我国水稻遗传育种研究进展与展望[J]. 中国稻米, 2023, 29(6): 1-4. |
[2] | 孙平勇, 舒服, 李天春, 许国冬, 张武汉, 何强, 邓华凤. 优质两系杂交水稻爽两优132高产制种技术[J]. 中国稻米, 2023, 29(6): 114-115. |
[3] | 从夕汉, 阮新民, 施伏芝, 杜弘杨, 罗彦长, 罗玉祥, 罗志祥. 广适籼型两系不育系7011S的选育与应用[J]. 中国稻米, 2023, 29(6): 116-118. |
[4] | 张欣欣, 明珂, 冯国忠. 水稻病虫害生物防治应用研究进展[J]. 中国稻米, 2023, 29(6): 16-20. |
[5] | 侯雨萱, 于林, 李阳, 谌江华. 16种杀菌剂对3种水稻病原细菌的室内抑菌效果研究[J]. 中国稻米, 2023, 29(6): 28-32. |
[6] | 白成鑫, 高嘉聪, 曾檬, 赵泓博, 赵鑫, 王帅, 王楠. 3种Maillard反应前体物质对稻草木质素腐解及腐殖质组成的影响[J]. 中国稻米, 2023, 29(6): 39-43. |
[7] | 刘佳欣, 吴周周, 周婵婵, 阿娜, 李漪濛, 王术. 水稻倒伏性状与抗倒途径研究进展[J]. 中国稻米, 2023, 29(6): 44-48. |
[8] | 郑广杰, 陶怡, 沈兴连, 叶昌, 徐亚楠, 褚光, 徐春梅, 王丹英. 水稻种子萌发出苗研究及直播生产上相关难题[J]. 中国稻米, 2023, 29(6): 49-55. |
[9] | 朱均林, 褚光, 章秀福. 近年我国水稻栽培学科若干热点领域研究进展与展望[J]. 中国稻米, 2023, 29(6): 5-9. |
[10] | 徐杰, 石浩, 杨柳, 刘厚清, 鲍春辉, 马昀钊, 吴文福. 中日粳稻适时收割对产量及品质影响的研究进展[J]. 中国稻米, 2023, 29(6): 67-72. |
[11] | 刘广林, 李虎, 吴子帅, 罗群昌, 朱其南, 陈传华. 广西氮高效高产优质常规稻品种选育策略与实践[J]. 中国稻米, 2023, 29(6): 79-82. |
[12] | 王忍, 黄璜, 陈灿, 马微微, 马昀君, 张印, 马学虎, 罗雨聪, 陈烈臣, 罗明德. 湖南稻鸭生态种养水稻品种优选研究[J]. 中国稻米, 2023, 29(6): 83-86. |
[13] | 徐富贤, 高尚卿, 孔晓谦, 徐魏, 伍燕翔, 徐麟, 魏林, 肖鹏飞, 佘恒志, 陈凯, 龚飞, 蒋鹏, 张林, 郭晓艺, 刘茂. 杂交水稻机械收获减少稻谷产量损失度的关键技术研究[J]. 中国稻米, 2023, 29(6): 99-102. |
[14] | 罗锡坤, 李敏, 张恒栋, 张发丽, 罗德强, 江学海, 周维佳. 不同类型杂交稻品种在贵州兴义的高产潜力及氮肥利用特性研究[J]. 中国稻米, 2023, 29(5): 105-109. |
[15] | 李睿, 于广星, 陈盈, 董立强, 王双, 李跃东. 基质粒径对水稻秧苗素质的影响[J]. 中国稻米, 2023, 29(5): 110-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||