中国稻米 ›› 2024, Vol. 30 ›› Issue (5): 10-18.DOI: 10.3969/j.issn.1006-8082.2024.05.002
收稿日期:
2024-07-31
出版日期:
2024-09-20
发布日期:
2024-09-12
通讯作者:
*baisong@gdaas.cn基金资助:
YANG Xujian, KONG Leilei, LIANG Jiayan, HU Xiaodan, YANG Wu, BAI Song*()
Received:
2024-07-31
Published:
2024-09-20
Online:
2024-09-12
Contact:
*baisong@gdaas.cn摘要:
本文介绍了稻米淀粉的分类和存在形态,综述了常用物理改性方法——水热处理(包括湿热处理、退火和蒸制等)改变稻米淀粉结构和成分,以及影响稻米淀粉血糖生成指数(GI)的机制。分析了影响水热处理及后续回生过程效果的因素(原料淀粉组成、温度、时间、含水量、处理次数等),并讨论了高静压、超声和微波等新型非加热淀粉物理改性方法改变稻米淀粉GI的技术特点。文章最后指出,采用加压蒸煮、高静压、超声及微波复合处理准确控制淀粉迁移、重组、糊化和回生过程,可能是未来采用物理改性方法生产低GI食物的趋势。
中图分类号:
杨旭健, 孔雷蕾, 梁嘉燕, 胡晓丹, 杨武, 白嵩. 水热处理等物理改性方法对稻米淀粉组成及血糖生成指数的影响[J]. 中国稻米, 2024, 30(5): 10-18.
YANG Xujian, KONG Leilei, LIANG Jiayan, HU Xiaodan, YANG Wu, BAI Song. Effects of Hydrothermal Treatment and Other Physical Modification Methods for Rice Starch and Glycemic Index[J]. China Rice, 2024, 30(5): 10-18.
[1] | SHIH F, KING J, DAIGLE K, et al. Physicochemical properties of rice starch modified by hydrothermal treatments[J]. Cereal Chemistry, 2007, 84(5): 527-531. |
[2] | RAGHUNATHAN R, PANDISELVAM R, KOTHAKOTA A, et al. The application of emerging non-thermal technologies for the modification of cereal starches[J]. LWT-Food Science and Technology, 2021, 138: 110 795. |
[3] | HUNG P V, CHAU H T, PHI N T L. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents[J]. Food Chemistry, 2016, 191: 74-80. |
[4] | WANG S, LI C, COPELAND L, et al. Starch retrogradation: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5): 568-585. |
[5] | KALE S J, JHA S K, NATH P. Effects of variable steaming on chemical composition, starch characteristics, and glycemic index of basmati (Pusa Basmati 1121) rice[J]. Journal of Food Process Engineering, 2017, 40(6): e12567. |
[6] | 徐瑶, 刘晓风, 杨月欣, 等. 碳水化合物质量指标以及血糖生成指数影响因素的进展[J]. 食品工业科技, 2023, 44(18):502-509. |
[7] | GAO M, JIA J H, ZHANG C J, et al. Structure, properties, and resistant starch content of modified rice flour prepared using dual hydrothermal treatment[J]. International Journal of Biological Macromolecules, 2024, 262: 130 050. |
[8] | TOUTOUNJI M R, FARAHNAKY A, SANTHAKUMAR A B, et al. Intrinsic and extrinsic factors affecting rice starch digestibility[J]. Trends in Food Science & Technology, 2019, 88: 10-22. |
[9] | YAMAGUCHI Y, OKAWA Y, NINOMIYA K, et al. Evaluation and suppression of retrogradation of gelatinized rice starch[J]. Journal of Nutritional Science and Vitaminology, 2019, 65: S134-S138. |
[10] | LAL M K, SINGH B, SHARMA S, et al. Glycemic index of starchy crops and factors affecting its digestibility: A review[J]. Trends in Food Science & Technology, 2021, 111: 741-755. |
[11] | MAAREL M J E C, LEEMHUIS H. Starch modification with microbial alpha-glucanotransferase enzymes[J]. Carbohydrate Polymers, 2013, 93(1): 116-121. |
[12] | GURAYA H S, JAMES C, CHAMPAGNE E T. Effect of enzyme concentration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch[J]. Starch, 2001, 53(3-4): 131-139. |
[13] | VANDEPUTTE G E, VERMEYLEN R, GEEROMS J, et al. Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch[J]. Journal of Cereal Science, 2003, 38(1): 43-52. |
[14] | NEWTON J, WANG Y J, MAUROMOUSTAKOS A. Effects of cultivar and processing condition on physicochemical properties and starch fractions in parboiled rice[J]. Cereal Chemistry, 2011, 88(4): 414-420. |
[15] | BAO J, ZHOU X, XU F, et al. Genome-wide association study of the resistant starch content in rice grains[J]. Starch, 2017, 69(7-8): 1600343. |
[16] | 杨树明, 杨涛, 王进进, 等. 不同基因型稻米混配及蒸煮对抗性淀粉含量的影响[J]. 湖南农业大学学报(自然科学版), 2010, 36(6):605-608. |
[17] | ZHOU X, YING Y, HU B, et al. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants[J]. Carbohydrate Polymers, 2018, 195: 1-8. |
[18] | ZHU L, LIU Q, WILSON J D, et al. Digestibility and physicochemical properties of rice(Oryza sativa L.) flours and starches differing in amylose content[J]. Carbohydrate Polymers, 2011, 86(4): 1 751-1 759. |
[19] | FREI M, SIDDHURAJU P, BECKER K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines[J]. Food Chemistry, 2003, 83(3): 395-402. |
[20] | PARK I M, IBÁÑEZ A M, ZHONG F, et al. Gelatinization and pasting properties of waxy and non‐waxy rice starches[J]. Starch, 2007, 59(8): 388-396. |
[21] | DUTTA H, MAHANTA C L. Effect of hydrothermal treatment varying in time and pressure on the properties of parboiled rices with different amylose content[J]. Food Research International, 2012, 49: 655-663. |
[22] | REED M O, AI Y, LEUTCHER J L, et al. Effects of cooking methods and starch structures on starch hydrolysis rates of rice[J]. Journal of Food Science, 2013, 78(7). |
[23] | 高品涵. 粳米中淀粉结构与非淀粉组分对淀粉消化性影响[D]. 无锡: 江南大学, 2023. |
[24] | JIRANUNTAKUL W, SUGIYAMA S, TSUKAMOTO K, et al. Nano-structure of heat-moisture treated waxy and normal starches[J]. Carbohydrate Polymers, 2013, 97(1): 1-8. |
[25] | ZHU F, LIU P Z. Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure[J]. Food Chemistry, 2020, 316: 126 036. |
[26] | WANG C, XUE Y, YOUSAF L, et al. Effects of high hydrostatic pressure on the ordered structure including double helices and V-type single helices of rice starch[J]. International Journal of Biological Macromolecules, 2020, 144: 1 034-1 042. |
[27] | JIRANUNTAKUL W, PUTTANLEK C, RUNGSARDTHONG V, et al. Amylopectin structure of heat-moisture treated starches[J]. Starch, 2012, 64(6): 470-480. |
[28] | KHUNAE P, TRAN T, SIRIVONGPAISAL P. Effect of heat-moisture treatment on structural and thermal properties of rice starches differing in amylose content[J]. Starch, 2007, 59(12): 593-599. |
[29] | CHENG K, CHEN S, YEH A. Physicochemical properties and in vitro digestibility of rice after parboiling with heat moisture treatment[J]. Journal of Cereal Science, 2019, 85: 98-104. |
[30] | TROUT D L, BEHALL K M, OSILESI O. Prediction of glycemic index for starchy foods[J]. The American Journal of Clinical Nutrition, 1993, 58(6): 873-878. |
[31] | MOGHADDAM E, VOGT J A, WOLEVER T M S. The Effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake[J]. The Journal of Nutrition, 2006, 136(10): 2 506-2 511. |
[32] | 陈旭, 陈选, 杨炯, 等. 低谷蛋白大米对Beagle犬血糖生成指数的影响[J]. 食品科学, 2020, 41(17): 126-132. |
[33] | BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing[J]. Journal of Experimental Botany, 2011, 62(14): 4 927-4 941. |
[34] | DUTT P, HASAN M, SHAQUQUZZAMAN M, et al. Quality assessment of Indian rice varieties, evaluation of its relationship with their glycemic index[J]. Journal of Food Measurement and Characterization, 2019, 13(3): 2 389-2 397. |
[35] | 王东旭, 郭美玲, 刘一锐, 等. 湿热处理对糯米粉血糖生成指数值及相关指标的影响[J]. 食品工业科技, 2023, 44(1):253-259. |
[36] | 王东旭, 郭美玲, 李占明, 等. 湿热及酶解处理对糯米粉体外消化特性和血糖生成指数的影响[J]. 食品安全质量检测学报, 2022, 13(7):2252-2 257. |
[37] | 陈双琴, 顾雪, 黄菊媛, 等. 糯稻种质胚乳淀粉组分含量及其消化特性[J]. 食品科学, 2023, 44(20):309-314. |
[38] | MILLER J B, PANG E, BRAMALL L. Rice: A high or low glycemic index food[J]. The American Journal of Clinical Nutrition, 1992, 56(6): 1 034-1 036. |
[39] | 汤剑豪, 白建江, 万常照, 等. 优糖米熟粉的理化特性与血糖生成指数评价[J]. 上海农业学报, 2023, 39(3):93-99. |
[40] | SILVA W M F, BIDUSKI B, LIMA K O, et al. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment[J]. Food Chemistry, 2017, 219: 260-267. |
[41] | HUNG P V, BINH V T, NHI P H Y, et al. Effect of heat-moisture treatment of unpolished red rice on its starch properties and in vitro and in vivo digestibility[J]. International Journal of Biological Macromolecules, 2020, 154: 1-8. |
[42] | 熊金娟, 陶倩, 丁文平, 等. 臭氧处理对糯米淀粉消化特性的影响研究[J]. 食品科技, 2017, 42(9):166-170. |
[43] | MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydrate Polymers, 2017, 157: 1 226-1 236. |
[44] | ZAVAREZE E D R, STORCK C R, de CASTRO L A S, et al. Effect of heat-moisture treatment on rice starch of varying amylose content[J]. Food Chemistry, 2010, 121(2): 358-365. |
[45] | SIVAKAMASUNDARI S K, MOSES J A, ANANDHARAMAKRISHNAN C. Effect of parboiling methods on the physicochemical characteristics and glycemic index of rice varieties[J]. Journal of Food Measurement and Characterization, 2020, 14(6): 3 122-3 137. |
[46] | BEMILLER J N, HUBER K C. Physical modification of food starch functionalities[J]. Annual Review of Food Science and Technology, 2015, 6: 19-69. |
[47] | BAE J, CHOI Y J, KIM H R, et al. Impact of steam pressure treatment on rough rice and its physicochemical properties[J]. LWT-Food Science and Technology, 2023, 181: 114 744. |
[48] | ZAVAREZE E D R, DIAS A R G. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers, 2011, 83(2): 317-328. |
[49] | ZENG F, MA F, KONG F S, et al. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch[J]. Food Chemistry, 2015, 172: 92-98. |
[50] | FU Z, CHEN J, LUO S J, et al. Effect of food additives on starch retrogradation: A review[J]. Starch, 2015, 67(1-2): 69-78. |
[51] | 王浩瑞, 李小平. 血糖生成指数测定方法及加工方式对谷物血糖生成指数的影响研究进展[J]. 食品科学, 2023, 44(11):338-347. |
[52] | VANDEPUTTE G E, VERMEYLEN R, GEEROMS J, et al. Rice starches. Ⅲ. Structural aspects provide insight in amylopectin retrogradation properties and gel texture[J]. Journal of Cereal Science, 2003, 38(1): 61-68. |
[53] | 沙文轩, 章海风, 朱文政, 等. 米水比对米饭食用品质的影响[J]. 中国粮油学报, 2023, 38(6):31-36. |
[54] | ZAVAREZE E D R, HALAL S L M E, SANTOS D G D L, et al. Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content[J]. Starch, 2012, 64(1): 45-54. |
[55] | 肖桂珍, 彭苏柳, 刘坚. 蒸谷米对血糖影响的研究进展[J]. 中华老年医学杂志, 2022(3):351-354. |
[56] | XU X N, YAN W L, YANG Z K, et al. Effect of ultra-high pressure on quality characteristics of parboiled rice[J]. Journal of Cereal Science, 2019, 87: 117-123. |
[57] | VERMEYLEN R, GODERIS B, DELCOUR J A. An X-ray study of hydrothermally treated potato starch[J]. Carbohydrate Polymers, 2006, 64(2): 364-375. |
[58] | SEOW E K, TAN T C, LEE L K, et al. Effects of honey types and heating treatment on the textural, thermal, microstructural, and chemical properties of glutinous rice flour gels[J]. Journal of Texture Studies, 2020, 51(6): 909-916. |
[59] | VAMADEVAN V, BERTOFT E. Impact of different structural types of amylopectin on retrogradation[J]. Food Hydrocolloids, 2018, 80: 88-96. |
[60] | LI C, HU Y M, LI E P. Effects of amylose and amylopectin chain-length distribution on the kinetics of long-term rice starch retrogradation[J]. Food Hydrocolloids, 2021, 111: 106 239. |
[61] | 余世锋, 于淼, 孙天颖, 等. 大米RS3型抗性淀粉的物化性质研究[J]. 食品科技, 2013, 38(4):154-159. |
[62] | 姜倩倩, 田耀旗, 徐学明, 等. 微波及超声-微波协同加热对大米淀粉回生特性的影响[J]. 食品与发酵工业, 2011, 37(6):56-59. |
[63] | HSU R J C, LU S, CHANG Y, et al. Effects of added water and retrogradation on starch digestibility of cooked rice flours with different amylose content[J]. Journal of Cereal Science, 2015, 61: 1-7. |
[64] | JIANG Q, XU X M, JIN Z Y, et al. Physico-chemical properties of rice starch gels: Effect of different heat treatments[J]. Journal of Food Engineering, 2011, 107(3): 353-357. |
[65] | HU X T, XU X, JIN Z, et al. Retrogradation properties of rice starch gelatinized by heat and high hydrostatic pressure (HHP)[J]. Journal of Food Engineering, 2011, 106(3): 262-266. |
[66] | GUNARATNE A, HOOVER R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches[J]. Carbohydrate Polymers, 2002, 49(4): 425-437. |
[67] | DENG Y, JIN Y F, LUO Y L, et al. Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules[J]. Journal of Cereal Science, 2014, 60(2): 302-310. |
[68] | YU S F, ZHANG Y C, GE Y H, et al. Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch[J]. Journal of Food Process Engineering, 2013, 36(6): 793-802. |
[1] | 张发丽, 王沁, 曾涛, 蒋明金, 何志旺, 张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响[J]. 中国稻米, 2024, 30(6): 55-59. |
[2] | 王岩, 高美琦, 李荣平, 赵先丽, 张美玲, 卞景阳. Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究[J]. 中国稻米, 2024, 30(6): 74-81. |
[3] | 缪添惠, 蔡芸菲, 王晓峰, 刘鑫, 俞琦英, 韩展誉, 王仁杯. 浙江省优质稻品种发展现状与对策[J]. 中国稻米, 2024, 30(6): 82-86. |
[4] | 旷娜, 刘智炫, 邹丹, 罗友谊, 赵正洪, 王立峰, 唐启源. 同等温度下头季和再生季稻米淀粉结构与性能差异分析[J]. 中国稻米, 2024, 30(5): 57-61. |
[5] | 王丰, 刘迪林, 朱满山, 廖亦龙, 李金华, 付崇允曾学勤, 曾学勤, 马晓智, 霍兴, 孔乐, 柳武革. 水稻不育系泰丰A创制及其优良品质性状遗传基础研究[J]. 中国稻米, 2024, 30(4): 24-32. |
[6] | 杜晓旭, 张莹莹, 何珍珍, 刘剑涛, 莫钊文, 潘圣刚, 田华, 段美洋, 祁剑英, 唐湘如. 抛光色选工艺过程对香稻米 2-AP含量和糊化特性的影响[J]. 中国稻米, 2024, 30(4): 53-55. |
[7] | 严鹏, 曾晴虹, 罗海伟, 陈龙周, 胡玉婷, 杨青青, 刘洋旋, 刘越, 穆麒麟, 田小海. 优质稻适宜收获期筛选研究[J]. 中国稻米, 2024, 30(4): 56-63. |
[8] | 吴梦寅, 蔡炜, 钟笑涵, 杨建昌, 刘立军, 张伟杨. 高温胁迫对水稻籽粒灌浆与稻米品质影响及其机理研究进展[J]. 中国稻米, 2024, 30(3): 10-17. |
[9] | 李建强, 费冰雁, 赵川. 新型锌肥对水稻产量和品质的影响[J]. 中国稻米, 2024, 30(3): 98-101. |
[10] | 徐春春, 纪龙, 陈中督, 方福平. 2023年我国水稻产业形势分析及2024年展望[J]. 中国稻米, 2024, 30(2): 1-4. |
[11] | 旷娜, 苗雪雪, 邹丹, 梁玉刚, 唐启源, 方宝华. 同等控温下头季稻和再生季稻稻米品质差异分析[J]. 中国稻米, 2024, 30(2): 43-46. |
[12] | 陈品, 刘馨月, 章丹, 张宗利. 江苏省稻米生产与市场流通格局:演变与方向[J]. 中国稻米, 2024, 30(2): 61-67. |
[13] | 徐荣, 韩光明, 杨婷, 寇祥明, 吴雷明, 马林杰, 张诚信, 王守红. 稻虾共作模式下水分管理方式对生产效率的影响[J]. 中国稻米, 2023, 29(6): 56-60. |
[14] | 徐杰, 石浩, 杨柳, 刘厚清, 鲍春辉, 马昀钊, 吴文福. 中日粳稻适时收割对产量及品质影响的研究进展[J]. 中国稻米, 2023, 29(6): 67-72. |
[15] | 万丙良, 杜雪树, 徐华山, 陈少愚, 游艾青. 湖北优质长粒籼稻品种创新与品牌打造[J]. 中国稻米, 2023, 29(6): 73-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||