[1] |
黎志康. 我国水稻分子育种计划的策略[J]. 分子植物育种, 2005, 3(5):603-608.
|
[2] |
罗利军. 水稻等基因导入系构建与分子技术育种[J]. 分子植物育种, 2005, 3(5):609-612.
|
[3] |
KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35: 25-34.
|
[4] |
钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展[J]. 中国水稻科学, 2000, 14(2):103-106.
|
[5] |
郭嗣斌, 韦宇, 李孝琼, 等. 小粒野生稻优异基因的挖掘与利用研究进展[J]. 植物遗传资源学报, 2016, 17(2):371-376.
|
[6] |
GUO S B, WEI Y, LI X Q, et al. Development and identification of introgression lines from the cross of Oryza sativa and Oryza minuta[J]. Rice Science, 2013, 20(2): 95-102.
|
[7] |
李孝琼, 陈颖, 韦宇, 等. 分子标记辅助选育抗褐飞虱和抗稻瘟病的水稻恢复系[J]. 西南农业学报, 2019, 32(5):952-958.
|
[8] |
韦宇, 李孝琼, 陈颖, 等. 小粒野生稻渗入系抗南方水稻黑条矮缩病QTL分析及利用[J]. 贵州农业科学, 2019, 47(9):1-5.
|
[9] |
ZHU Z Z, LI X Q, WEI Y, et al. Identification of a novel QTL for panicle length from wild rice (Oryza minuta) by specific locus amplified fragment sequencing and high density genetic mapping[J]. Frontiers in Plant Science, 2018, 9: 149.
|
[10] |
LI X Q, WEI Y, LI J, et al. Identification of QTL TGW12 responsible for grain weight in rice based on recombinant inbred line population crossed by wild rice (Oryza minuta) introgression line K1561 and indica rice G1025[J]. BMC Genetics, 2020, 21 (1):1-10.
|
[11] |
韦宇, 李孝琼, 黄克宁, 等. 小粒野生稻产量相关性状的QTL定位[J]. 南方农业学报, 2015, 46(6):958-963.
|
[12] |
李孝琼, 韦宇, 邓国富, 等. 水稻遗传图谱的构建和粒形相关性状的QTL定位[J]. 南方农业学报, 2014, 45(7):1156-1 161.
|
[13] |
郭嗣斌, 刘开强, 李孝琼, 等. 小粒野生稻基因渗入系抗褐飞虱的QTL定位分析[J]. 南方农业学报, 2014, 45(6):913-917.
|
[14] |
李双, 唐显岩, 王春雷, 等. 8个籼型恢复系相关农艺性状的配合力分析[J]. 植物遗传资源学报, 2019, 20(5):1178-1 185.
|
[15] |
YANG J, ZHU J. Predicting superior genotypes in multiple environments based on QTL effects[J]. Theoretical and Applied Genetics, 2005, 110(7): 1 268-1 274.
|
[16] |
郭嗣斌, 李孝琼, 韦宇, 等. 用于鉴定水稻穗长性状的dCAPS的分子标记及其应用:ZL 2019 1 0834335.6[P]. 2020-09-18.
|
[17] |
李孝琼, 郭嗣斌, 陈颖, 等. 用于鉴定水稻粒重性状的dCAPS的分子标记及其应用:ZL 202410104664.6[P]. 2024-07-03.
|
[18] |
郭嗣斌, 李孝琼, 韦宇, 等. 水稻抗褐飞虱基因Bph31(t)的分子标记及其应用:ZL 2016 1 0945758.1[P]. 2019-08-29.
|
[19] |
郭嗣斌, 李孝琼, 韦宇, 等 一个水稻抗白背飞虱基因Wbph9(t)及其分子标记和应用:ZL 2016 1 0931490.6[P]. 2019-08-23.
|
[20] |
李孝琼, 李经成, 韦宇, 等. 兼抗两种稻飞虱和稻瘟病多基因聚合系的创制[J]. 分子植物育种, 2022, 20(4):1176-1 183.
|
[21] |
李经成, 李孝琼, 陈颖, 等. 优质杂交水稻新组合华浙优1561[J]. 杂交水稻, 2021, 36(4):119-121.
|
[22] |
AMANTE-BORDEOS A, SITCH L A, NELSON R, et al. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa[J]. Theoretical and Applied Genetics, 1992, 84: 345-354.
|
[23] |
郭嗣斌, 林兴华, 张端品. 小粒野生稻抗白叶枯病新基因的鉴定与初步定位[J]. 中国农业科学, 2010, 43(13):2611-2 618.
|
[24] |
LIU G, LU G, ZENG L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6[J]. Molecular Genetics and Genomics, 2002, 267: 472-480.
|
[25] |
RAHMAN M L, JIANG W, CHU S H, et al. High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta[J]. Theoretical and Applied Genetics, 2009, 119: 1 237-1 246.
|
[26] |
GU K Y, YANG B, TIAN D S, et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005, 435: 1 122-1 125
|
[27] |
QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172: 1 901-1 914.
|
[28] |
官华忠, 陈志伟, 潘润森, 等. 通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性[J]. 分子植物育种, 2006, 4(1):49-53.
|
[29] |
谢华安. 明恢63的选育与利用[J]. 福建农业学报, 1998, 20(4):1-6.
|
[30] |
覃惜阴, 韦仕邦, 黄英美, 等. 桂99杂交水稻恢复系桂99的选育与应用[J]. 杂交水稻, 1994, 19(2):1-3.
|
[31] |
鄂志国, 程本义, 孙红伟, 等. 近 40 年我国水稻育成品种分析[J]. 中国水稻科学, 2019, 33(6):523-531.
|
[32] |
倪大虎, 易成新, 杨剑波, 等. 利用分子标记辅助选择聚合Pi9和Xa23基因[J]. 分子植物育种, 2007, 5(4):491-496.
|
[33] |
LUO Y, SANGHA J S, WANG S, et al. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight[J]. Molecular Breeding, 2012, 30(4): 1 601-1 610.
|