中国稻米 ›› 2024, Vol. 30 ›› Issue (6): 66-73.DOI: 10.3969/j.issn.1006-8082.2024.06.011
苏仙月(), 蒋恬毅, 普雪, 蒋志豪, 刘涛, 文建成, 李丹丹*(
), 徐笑宇*(
)
收稿日期:
2024-02-22
出版日期:
2024-11-20
发布日期:
2024-11-19
通讯作者:
*lidanzaizhe@163.com; 431740754@qq.com作者简介:
2091846588@qq.com
基金资助:
SU Xianyue(), JIANG Tianyi, PU Xue, JIANG Zhihao, LIU Tao, WEN Jiancheng, LI Dandan*(
), XU Xiaoyu*(
)
Received:
2024-02-22
Published:
2024-11-20
Online:
2024-11-19
Contact:
*lidanzaizhe@163.com; 431740754@qq.com
About author:
2091846588@qq.com
摘要:
通过SSR分子标记技术对27份来自云南为主的国内水稻种质资源开展了遗传多样性分析,在遗传系数0.66和0.78处可将材料划分为4个大类群和9个小亚群,并依此调查比较了参试水稻品种的重要农艺性状。在此基础上,筛选出遗传差异较高、农艺性状表现较佳的7份云南水稻材料,重点分析了其稻米品质和米糠脂质特性。结果表明,棕榈酸(C16:0)、油酸(C18:1)和亚油酸(C18:2)是米糠脂质的主要脂肪酸成分,籽粒总蛋白质含量和总淀粉含量均与米糠的总脂质含量呈显著负相关关系,同时与米糠的C18脂肪酸(如硬脂酸、油酸)存在显著相关性(p<0.05),但米糠自身的脂质代谢则表现出了一定的独立性。综合遗传、农艺和品质性状评价,筛选出籼稻品种滇谷163具有较高的米糠油开发潜力。
中图分类号:
苏仙月, 蒋恬毅, 普雪, 蒋志豪, 刘涛, 文建成, 李丹丹, 徐笑宇. 云南水稻种质资源的遗传多样性与米糠脂质特性检测分析[J]. 中国稻米, 2024, 30(6): 66-73.
SU Xianyue, JIANG Tianyi, PU Xue, JIANG Zhihao, LIU Tao, WEN Jiancheng, LI Dandan, XU Xiaoyu. Genetic Diversity of Yunnan Rice Germplasm Resources and Detection and Analysis of Rice Bran Lipid Characteristics[J]. China Rice, 2024, 30(6): 66-73.
图4 水稻籽粒主要品质与米糠脂质特性的相关性分析(p<0.05) MUFA(monounsaturated fatty acids),即所有单不饱和脂肪酸的%总和,由C14:1、C16:1、C18:1组成;PUFA(polyunsaturated fatty acids),即所有多不饱和脂肪酸的%总和,由C18:2和C18:3组成;SFA(saturated fatty acids),即所有饱和脂肪酸的%总和,包括C14:0、C16:0、C18:0、C20:0 。
[1] | 邓伟, 吕莹, 董阳均, 等. 云南水稻种质资源的遗传多样性分析[J]. 植物遗传资源学报, 2023, 24(3):624-635. |
[2] | 马波, 来永才, 王俊河, 等. 施氮量、种植密度对寒地盐碱条件下水稻产量及干物质积累的互作效应[J]. 中国稻米, 2022, 28(6):89-93. |
[3] | 陈越, 陈玲, 钟巧芳, 等. 云南同名地方稻种资源主要表型性状及遗传变异的比较分析[J]. 南方农业学报, 2022, 53(7):1796-1 808. |
[4] | 刘振洋. 基于数据挖掘的云南省水稻产量预测模型研究[D]. 昆明: 云南农业大学, 2023. |
[5] | 刘国兰, 余新桥, 刘毅, 等. 节水抗旱稻品种选育的回顾与展望[J]. 上海农业学报, 2022, 38(4):20-25. |
[6] | PUNI S, KUMAR M, KUMAR SIROHA A, et al. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application[J]. Rice Science, 2021, 28 (3): 217-232. |
[7] | 唐彩云, 张风姣, 刘金光, 等. 米糠蛋白的提取、特性、功能复合物及应用研究进展[J]. 食品工业科技, 2024, 45(12):1-12. |
[8] | ZHANG D, DUAN X L, WANG Y Y, et al. A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties[J]. Journal of Food Measurement and Characterization, 2021, 15 (2): 2 064-2 077. |
[9] | LIU R R, XU Y, CHANG M, et al. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil[J]. Food Chemistry, 2021, 343:128 431. |
[10] | ZHANG J L, LU Z, WU Z Z, et al. The dopaminergic neuroprotective effects of different phytosterols identified in rice bran and rice bran oil[J]. Food and Function, 2021, 12(21):10538-10 549. |
[11] | WONGWAIWECH D, WEERAWATANAKORN M, THARATHA S, et al. Comparative study on amount of nutraceuticals in by-products from solvent and cold pressing methods of rice bran oil processing[J]. Journal of Food and Drug Analysis, 2019, 27 (1): 71-82. |
[12] | GOTAMA B, RAHMAN A K, AHMAD A, et al. Extraction of rice bran oil using microwave-assisted extraction and green solvents[J]. IOP Conference Series, 2022, 1 105 (1): 12 052. |
[13] | MOREIRA B P, DRASZEWSKI C P, ROSA N C, et al. Integrated rice bran processing by supercritical CO2 extraction and subcritical water hydrolysis to obtain oil, fermentable sugars, and platform chemicals[J]. Journal of Supercritical Fluids, 2023, 192: 105 786. |
[14] | 樊振江, 孟楠, 栗亚琼, 等. 米糠油的提取工艺与营养价值的研究进展[J]. 食品科技, 2023, 48(11):171-177. |
[15] | DURMAZ G, GOKMEN V. Effect of refining on bioactive composition and oxidative stability of hazelnut oil[J]. Food Research International, 2019, 116: 586-591. |
[16] | SUN X T, ZHANG L F, YAN J, et al. Effects of enzymatic free fatty acid reduction process on the composition and phytochemicals of rice bran oil[J]. Food Chemistry, 2021, 337: 127 757. |
[17] | WANG X S, WANG X G, WANG T. An effective method for reducing free fatty acid content of high-acid rice bran oil by enzymatic amidation[J]. Journal of Industrial and Engineering Chemistry, 2017, 48: 119-124. |
[18] | 祝振杰, 陈小军, 高艳昌, 等. 米糠油加工过程中组成及品质变化的研究[J/OL]. 中国油脂, 2024. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.230092. |
[19] | SINGH S P, ZHOU X, LIU Q, et al. Metabolic engineering of new fatty acids in plants[J]. Current Opinion in Plant Biology, 2005, 8(2):197-203. |
[20] | CAHOON E B, KINNEY A J. The production of vegetable oils with novel properties: using genomic tools to probe and manipulate plant fatty acid metabolism[J]. European Journal of Lipid Science and Technology, 2005, 107(5): 239-243. |
[21] | CAHOON E B, YONGHUA L B. Plant unusual fatty acids: learning from the less common[J]. Current Opinion in Plant Biology, 2020, 55: 66-73. |
[22] | ZAMBELLI A. Current status of high oleic seed oils in food processing[J]. Journal of the American Oil Chemists’ Society, 2020, 98 (2): 129-137. |
[23] | KINNEY A J, CLEMENTE T E. Modifying soybean oil for enhanced performance in biodiesel blends[J]. Fuel Processing Technology, 2005, 86(10): 1 137-1 147. |
[24] | ZAPLIN E S, LIU Q, LI Z, et al. Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene[J]. Functional Plant Biology, 2013, 40(10): 996-1 004. |
[25] | TIWARI G J, LIU Q, SHRESHTHA P, et al. RNAi-mediated down-regulation of the expression ofOsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain[J]. BMC Plant Biology, 2016, 16(1): 1-13. |
[26] | ABE K, ARAKI E, SUZUKI Y, et al. Production of high oleic/low linoleic rice by genome editing[J]. Plant Physiology and Biochemistry, 2018, 13 158-62. |
[27] | JADHAV S, BALAKRISHNAN D, GOURI SHANKAR V, et al. Genetic diversity analysis and population structure in a rice germplasm collection of different maturity groups[J]. Journal of Plant Biochemistry and Biotechnology, 2021, 31 (3): 524-532. |
[28] | AWAD ALLAH M M A, SHAFIE W W M, ALSUBEIE M S, et al. Utilization of genetic resources, genetic diversity and genetic variability for selecting new restorer lines of rice (Oryza sativa L.)[J]. Genes, 2022, 13 (12): 2 227. |
[29] | 吴锦泉, 张小强, 胡忠磊, 等. 利用SSR标记分析江苏水稻联合体试验品系遗传多样性[J]. 农业与技术, 2020, 40(20):26-29. |
[30] | 国家市场监督管理总局, 国家标准化管理委员会. GB/T 39917—2021,主要农作物品种真实性和纯度SSR分子标记检测稻[S]. 北京: 全国农作物种子标准化技术委员会, 2021. |
[31] | 张建冲, 杨翠, 杨世丽, 等. 贵州地方水稻种质的SSR遗传多样性及群体结构分析[J]. 分子植物育种, 2022, 20(11):3664-3 676. |
[32] | 张昊. SSR分子标记在抗稻瘟病基因鉴定、遗传多样性分析及水稻育种上的应用[D]. 天津: 天津农学院, 2022. |
[33] | XU X, VANHERCKE T, SHRESTHA P, et al. Upregulated lipid biosynthesis at the expense of starch production in potato (Solanum tuberosum) vegetative tissues via simultaneous downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 expressions[J]. Frontiers in Plant Science, 2019, 10: 1 444. |
[34] | DENG F, LI Q, CHEN H, et al. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage[J]. Carbohydrate Polymers, 2021, 252: 117 212. |
[35] | 中华人民共和国农牧渔业部. GB7648—1987,水稻、玉米、谷子籽粒直链淀粉测定法[S]. 北京: 国家质检总局,1987. |
[36] | 王金灿. GB5009.5—2016《食品安全国家标准食品中蛋白质的测定》之5.1凯氏定氮法具体操作疑难解析[J]. 食品安全导刊, 2018(30):54-55. |
[37] | 高慧, 王鹏伟, 刘杰, 等. 19份马铃薯品种的SSR分析[J]. 种子, 2020, 39(1):26-32. |
[38] | 王衍坤, 韦新宇, 胡杰, 等. 12份水稻恢复系的遗传多样性分析及指纹图谱构建[J]. 亚热带农业研究, 2022, 18(2):73-78. |
[39] | ABOU KHALIFA A A B, ZIDEN A A, ELSHENAWY M M, et al. Effect of planting methods and cultivars on rice grain quality[J]. Journal of Plant Production, 2021, 12 (11): 1 247-1 254. |
[40] | ZHANG P, LI J, LI X, et al. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers[J]. PLoS ONE, 2017, 6(12): e27565. |
[41] | ZHU D, FANG C Y, QIAN Z H, et al. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents[J]. Food Hydrocolloids, 2021, 110: 106 170. |
[42] | TAO K Y, YU W W, PRAKASH S, et al. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference[J]. Carbohydrate Polymers, 2019, 219: 251-260. |
[43] | ZHANG J Y, KONG H C, BAN X F, et al. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio[J]. Carbohydrate Polymers, 2022, 295: 119 834. |
[44] | SONG E H, JEONG J, YONGJOO PARK C, et al. Metabotyping of rice (Oryza sativa L.) for understanding its intrinsic physiology and potential eating quality[J]. Food Research International, 2018, 111: 20-30. |
[45] | 李彩云, 袁洁瑶, 刘艳兰, 等. 稻米中脂质对淀粉性质影响的研究进展[J]. 粮油食品科技, 2023, 31(1):56-65. |
[46] | CHEN J, CAI H L, ZHANG M N, et al. Effects of rice protein on the formation and structural properties of starch-lipid complexes in instant rice noodles incorporated with different fatty acids[J]. Food Bioscience, 2023, 54: 102 851. |
[47] | 吴焱, 袁嘉琦, 张超, 等. 稻米脂肪与品质的关系及其调控[J]. 江苏农业学报, 2020, 36(3):769-776. |
[48] | 严帝. 稻谷加工工艺改进[J]. 食品安全导刊, 2022(8):119-121. |
[49] | 滕烜. 水稻胚乳淀粉合成相关基因FLO16的图位克隆与功能分析[D]. 南京: 南京农业大学, 2018. |
[50] | CHEN Z K, DU Y F, MAO Z L, et al. Grain starch, fatty acids, and amino acids determine the pasting properties in dry cultivation plus rice cultivars[J]. Food Chemistry, 2022, 373: 131 472. |
[51] | YANG Y C, GUO M, SUN S Y, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10 (1): 1 949. |
[52] | 杨楠, 陈恺茜, 杨勤忠, 等. 云南地方籼粳稻稻瘟病抗性和农艺性状差异分析及优异稻种筛选[J]. 南方农业学报, 2021, 52(10):2680-2 689. |
[53] | 李欣飞. 滇型杂交粳稻不同世代产量品质性状遗传变异与利用评价[D]. 昆明: 云南农业大学, 2023. |
[54] | 张国忠, 李娟, 李毓才, 等. 氮肥减施与移栽密度对杂交粳稻滇禾优615产量和食味品质的影响[J]. 作物杂志, 2023(3):109-115. |
[1] | 代帅军, 张运波, 黄礼英. 粮食作物早发的研究进展[J]. 中国稻米, 2025, 31(1): 1-10. |
[2] | 温雅, 顾嘉怡, 王超瑞, 张瑛, 肖治林, 张耗. 水稻高产减排的氮肥管理技术及其对稻田温室气体排放影响的研究进展[J]. 中国稻米, 2025, 31(1): 11-17. |
[3] | 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 干旱胁迫下水杨酸对不同耐旱性水稻品种生长和生理特性的影响#br#[J]. 中国稻米, 2025, 31(1): 27-34. |
[4] | 毛晓红, 李懿芸, 傅琳琳. 浙江粮食生产特征与产能提升对策研究[J]. 中国稻米, 2025, 31(1): 44-53. |
[5] | 余艳锋, 袁婷婷, 余永琦, 孙明珠. 江西粮食产业现状及高质量发展对策[J]. 中国稻米, 2025, 31(1): 54-60. |
[6] | 段俊枝, 燕照玲, 齐红志, 张会芳, 陈海燕, 杨翠苹, 王楠, 卓文飞. WRKY转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2025, 31(1): 61-67,73. |
[7] | 王英, 马建森, 王芳, 刘汝亮, 洪瑜, 冒辛平. 引黄灌区水稻氮高效品种筛选评价[J]. 中国稻米, 2025, 31(1): 74-78,83. |
[8] | 谌江华, 肖山, 郑炜, 柴伟纲, 姚红燕. 水稻二化螟性诱智能监测效果研究[J]. 中国稻米, 2025, 31(1): 89-93. |
[9] | 吴华宇, 吴红淼, 李忠, 吴文革. 水稻机插侧深施肥技术的发展及技术要点[J]. 中国稻米, 2025, 31(1): 94-99. |
[10] | 康洪灿, 李国生, 王锦艳, 张义, 段浩平, 尹正钦, 何荣满, 钏兴宽. 播种期对水稻两用核不育系育性转化和自交结实率的影响[J]. 中国稻米, 2025, 31(1): 100-105. |
[11] | 张少波, 张金成. 寒地水稻侧深变量施肥技术探讨#br#[J]. 中国稻米, 2025, 31(1): 106-108. |
[12] | 王彩艳, 郑良燕, 于兰, 徐旻鹰, 顾兴国. 浙江稻作农业文化遗产时空特征、多重价值及保护发展研究[J]. 中国稻米, 2025, 31(1): 112-119. |
[13] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[14] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
[15] | 夏昕彤, 戴淑婷, 张萌恩, 王旭东, 何丽芝, 柳丹. 根表铁膜对水稻体内重金属迁移积累影响的研究进展[J]. 中国稻米, 2024, 30(6): 15-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||