[1] |
国家水稻数据中心. 中国水稻品种及其系谱数据库[BD/OL]. http://www.ricedata.cn/variety.
|
[2] |
石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1985, 28(2): 44-48.
|
[3] |
李成荃, 许克农, 王守海, 等. 粳型水稻光敏核不育系7001S的育性与利用研究[J]. 安徽农业科学, 1994, 22(1): 11-15.
|
[4] |
李任华, 王象坤, 罗孝和, 等. 光敏核不育系轮回422S的选育[J]. 杂交水稻, 1995, 10(6): 7-9.
|
[5] |
白一松, 张培江, 孙明, 等. 粳型广亲和光敏核不育系4008S的选育和特征特性[J]. 安徽农业科学, 1996, 24(4): 294-296.
|
[6] |
王长义, 冯云庆, 戚华雄, 等. 鄂粳杂1号选育与应用研究[J]. 湖北农业科学, 1996, 35(suppl1): 42-47.
|
[7] |
斯华敏, 付亚萍, 刘文真, 等. 水稻光温敏雄性核不育系的系谱分析[J]. 作物学报, 2012, 38(3): 394-407.
|
[8] |
方国成, 王长义. 粳型光敏核不育系N95076S的选育与利用[J]. 湖北农业科学, 1998,5: 7-10.
|
[9] |
汤俭民, 姜福元, 曹庆云, 等. 两系全香型优质杂交粳稻粳两优5975的选育及应用[J]. 杂交水稻, 2011, 26(4): 19-21.
|
[10] |
胡刚, 刘凯, 杨国才, 等. 两系杂交粳稻新品种粳两优 5519 的选育与应用[J]. 湖北农业科学, 2012, 51(24):5576-5 578.
|
[11] |
罗孝和, 邱趾忠, 李任华. 导致不育临界温度低的两用不育系培矮64S[J]. 杂交水稻, 1992, 7(1): 27-29.
|
[12] |
祁玉良, 张淮, 张明年. 两系亚种间杂交粳稻信杂粳1号的选育及应用[J]. 河南农业科学, 2003(10): 4-6.
|
[13] |
余新春, 鲁伟林, 石守设, 等. 高产稳产多抗两系杂交粳稻新组合6优53[J]. 杂交水稻, 2013, 28(4): 87-89.
|
[14] |
犹召, 周飞捷, 肖晶晶, 等. 优质籼型温敏核不育系玉2862S的选育与应用[J]. 杂交水稻, 2022, 37(4): 39-42.
|
[15] |
谭瑗瑗, 汪庆, 富昊伟, 等. 利用花培与辐照诱变培育粳型两系不育系江79S[J]. 核农学报, 2022, 36(6): 1 073-1 079.
|
[16] |
高扬, 谭炎宁, 孟昭河, 等. 水稻反向温敏不育系在寒地稻区的育性表现[J]. 杂交水稻, 2017, 32(1): 27-31.
|
[17] |
涂建, 卢义宣, 罗友金, 等. 不同生态条件下水稻光温敏核不育系育性转换规律研究[J]. 西南农业学报, 2003, 16(2): 11-16.
|
[18] |
卢义宣. 云南高产优质两系杂交粳稻的选育及产业化开发[J]. 杂交水稻, 2010, 25(suppl1): 41-45.
|
[19] |
涂建, 罗友金, 董阳钧, 等. 高原粳型优质软米光温敏核不育系云粳202S的选育[J]. 杂交水稻, 2010, 25(suppl1): 182-184.
|
[20] |
盛孝邦. 光敏感核不育水稻农垦58S雄性不育性的遗传学研究[J]. 中国水稻科学, 1992, 6(1): 5-14.
|
[21] |
ZHANG Q F, SHEN B Z, DAI X K, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(18): 8 675-8 679.
|
[22] |
MEI M H, DAI X K, XU C G, et al. Mapping and genetic analysis of the genes for photoperiod-sensitive genic male sterile in rice using the original mutant Nongken 58S[J]. Crop Science, 1999, 39(6): 1 711-1 715.
|
[23] |
FAN Y R, YANG J Y, SANDRA M M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15 144-15 149.
|
[24] |
DING J H, LU Q, OUYANG Y D, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2 654-2 659.
|
[25] |
ZHOU H, LIU Q J, LI J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660.
|
[26] |
张华丽, 陈晓阳, 黄建中, 等. 中国两系杂交水稻光温敏核不育基因的鉴定与演化分析[J]. 中国农业科学, 2015, 48(1): 1-9.
|
[27] |
ZHOU H, ZHOU M, YANG Y, et al. RNase Z(S1)processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice[J]. Nature Communications, 2014, 5: 4 884-4 893.
|
[28] |
ZHANG Y F, LI Y L, ZHONG X, et al. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis[J]. Plant Biotechnology Journal, 2022, 20(10): 2 023-2 035.
|
[29] |
ZHOU L, MAO Y C, YANG Y M, et al. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis[J]. Plant Biotechnology Journal, 2024, 22(7): 2 020-2 032.
|
[30] |
WANG W S, RAMIL M, HU Z Q, et al. Genomic variation in 3 010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7 703): 43-49.
|
[31] |
YANG J Y, ZHAO X B, CHENG K, et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice[J]. Science, 2012, 337: 1 336-1 340.
|
[32] |
TAKAHIKO K, TOMONORI T, MOTOYUKI A, et al. Two tightly linked genes at the hsa1 locus cause both F1 and F2 hybrid sterility in rice[J]. Molecular Plant, 2016, 9(2): 221-232.
|
[33] |
YU Y, ZHAO Z G, SHI Y R, et al. Hybrid sterility in rice (Oryza sativa L.) involves the tetratricopeptide repeat domain containing protein[J]. Genetics, 2016, 203(3): 1 439-1 451.
|
[34] |
LONG Y M, ZHAO L F, NIU B X, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48): 18 871-18 876.
|
[35] |
SHEN R X, LIU X P, WU J, et al. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice[J]. Nature Communications, 2017, 8: 1 310-1 317.
|
[36] |
YOKO M, YOSHIAKI H, NORI K. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20 417-20 422.
|
[37] |
WANG C L, WANG J, LU J Y, et al. A natural gene drive system confers reproductive isolation in rice[J]. Cell, 2023, 186(17): 3 577-3 592.
|
[38] |
YU X W, ZHAO Z G, ZHENG X M, et al. A selfish genetic element confers non-Mendelian inheritance in rice[J]. Science, 2018, 360: 1 130-1 132.
|
[39] |
YAMAGATA Y, YAMAMOTO E, AYA K, et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 1 494-1 499.
|
[40] |
SANO Y, SANO R, EIGUCHI M, et al. Gamete eliminator adjacent to the wx locus as revealed by pollen analysis in rice[J]. Heredity, 1994, 85(4): 310-312.
|
[41] |
ZHOU P H, WANG Z J, ZHU X C, et al. A minimal genome design to maximally guarantee fertile inter-subspecific hybrid rice[J]. Molecular Plant, 2023, 16(4): 726-738.
|
[42] |
WANG M M, ZHU X P, PENG G Q, et al. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice[J]. Molecular Plant, 2022, 15(6): 956-972.
|
[43] |
GOU Y J, HENG Y Q, DING W A, et al. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies[J]. Nature Communications, 2024, 15: 2 262-2 270.
|
[44] |
彭国清, 刘明龙, 周海. 水稻环境敏感雄性不育研究现状与挑战[J]. 华南农业大学学报, 2022, 43(6): 60-68.
|
[45] |
HAN Y, JIANG S Z, ZHONG X, et al. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15[J]. Plant Biotechnology Journal, 2023, 21(8): 1 659-1 670.
|
[46] |
王芳权, 范方军, 夏士健, 等. 水稻光温敏核不育基因tms5与pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329.
|
[47] |
YU B, LIU LT, WANG T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice[J]. Plant, Cell & Environment, 2019, 42(12): 3 340-3 354.
|
[48] |
CHEN H Q, ZHANG Z G, NI E D, et al. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa)[J]. New Phytologist, 2020, 225(5): 2 077-2 093.
|
[49] |
XUE Z Y, XU X, ZHOU Y, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice[J]. Nature Communications, 2018, 9: 604-610.
|
[50] |
YANG H, LI Y F, CAO Y W, et al. Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation[J]. Nature Communications, 2022, 13: 485-491.
|
[51] |
王晓敏, 李波, 徐小健, 等. 影响杂交水稻制种母本异交结实率的因素[J]. 作物研究, 2015, 29(3): 317-320.
|
[52] |
应存山, 章善庆. 对国际热带农业研究所收集的稻属种的柱头外露性状的研究[J]. 中国水稻科学, 1989, 3(2): 62-66.
|
[53] |
ZHOU H, LI P B, XIE W B, et al. Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice[J]. Molecular Plant, 2017, 10(4): 634-644.
|
[54] |
ZHU X Y, GOU Y J, HENG Y Q, et al. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice[J]. Plant Biotechnology Journal, 2023, 21(2): 381-390.
|
[55] |
国家统计局. 中国统计年鉴(2020)[M]. 北京: 中国统计出版社, 2020.
|