China Rice ›› 2022, Vol. 28 ›› Issue (5): 82-91.DOI: 10.3969/j.issn.1006-8082.2022.05.014
• Special Thesis & Basic Research • Previous Articles Next Articles
Received:
2022-04-18
Online:
2022-09-20
Published:
2022-09-21
作者简介:
clwang@jaas.ac.cn
基金资助:
CLC Number:
WANG Cailin. Development and Enlightenment of Japonica Rice Breeding with Good Eating Quality in Jiangsu Province[J]. China Rice, 2022, 28(5): 82-91.
王才林. 江苏省优良食味粳稻品种培育的发展与启示[J]. 中国稻米, 2022, 28(5): 82-91.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2022.05.014
[1] | 王才林. 优良食味水稻产业关键实用技术100问[M]. 北京: 中国农业出版社, 2021:1-5. |
[2] | 王才林, 张亚东, 朱镇, 等. 水稻优质抗病高产育种的研究与实践[J]. 江苏农业学报, 2012, 28(5):921-927. |
[3] | 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10):105-107. |
[4] | 王才林, 朱镇, 张亚东, 等. 粳稻外观品质的选择效果[J]. 江苏农业学报, 2007, 23(2):81-86. |
[5] | 王才林, 朱镇, 张亚东, 等. 江苏省粳稻品质改良的成就、问题与对策[J]. 江苏农业学报, 2008, 24(2):199-203. |
[6] | 杜永林, 邓建平, 黄银忠, 等. 论江苏稻米产业经济的地位和功能及其发展战略[J]. 中国稻米, 2006, 12(1):6-9. |
[7] | 王才林, 张亚东, 赵春芳, 等. 江苏省优良食味粳稻的遗传与育种研究[J]. 遗传, 2021, 43(5):442-458. |
[8] | 张昌泉, 赵冬生, 李钱峰, 等. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49(22):4267-4 283. |
[9] | 张巧凤, 吉健安, 张亚东, 等. 粳稻食味仪测定值与食味品尝综合值的相关性分析[J]. 江苏农业学报, 2007, 23(3):161-165. |
[10] | 张春红, 张巧凤, 李金州, 等. 武育粳3号/爱知106 F2群体稻米外观品质与农艺性状的相关分析[J]. 安徽农业科学, 2010, 38(3):1179-1 181. |
[11] | 张春红, 李金州, 田孟祥, 等. 不同食味粳稻品种稻米蛋白质相关性状与食味的关系[J]. 江苏农业学报, 2010, 26(6):1126-1 132. |
[12] | WANG C L, ZHANG Y D, ZHU Z, et al. Development of a new japonica rice variety Nanjing 46 with good eating quality by marker assisted selection[J]. Plant Molecular Breeding, 2009, 7(6): 1 070-1 076. |
[13] | 朱昌兰, 沈文飚, 翟虎渠, 等. 水稻低直链淀粉含量基因育种利用的研究进展[J]. 中国农业科学, 2004, 37(2): 157-162. |
[14] | MIKAMI I, UWATOKO N, IKEDA Y, et al. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theoretical and Applied Genetics, 2008, 116(7): 979-989. |
[15] | BISELLI C, CAVALLUZZO D, PERRINI R, et al. Improvement of marker-based predictability of apparent amylose content in japonica rice through GBSSI allele mining[J]. Rice, 2014, 7(1): 1. |
[16] | ZHANG Z J, LI M, FANG Y W, et al. Diversification of the waxy gene is closely related to variations in rice eating and cooking quality[J]. Plant Molecular Biology Reporter, 2012, 30(2): 462-469. |
[17] | WANG C L, ZHANG Y D, ZHU Z, et al. Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China[J]. Journal of Integrative Agriculture, 2017, 16(5): 992-999. |
[18] | 于新, 赵庆勇, 赵春芳, 等. 携带Wx-mq基因的不同类型水稻新品种(系)直链淀粉含量分析[J]. 江苏农业学报, 2012, 28(6):1218-1 222. |
[19] | 赵庆勇, 朱镇, 张亚东, 等. 播期和地点对不同生态类型粳稻稻米品质性状的影响[J]. 中国水稻科学, 2013, 27(3):297-304. |
[20] | 朱镇, 赵庆勇, 张亚东, 等. 播期和种植地点对南粳46稻米品质及RVA谱的影响[J]. 江苏农业学报, 2013, 29(5):921-927. |
[21] | 姚姝, 于新, 周丽慧, 等. 氮肥用量和播期对优良食味粳稻直链淀粉含量的影响[J]. 中国水稻科学, 2016, 30(5):535-549. |
[22] | HANNAH L C, JAMES M. The complexities of starch biosynthesis in cereal endosperms[J]. Current Opinion in Biotechnology, 2008, 19: 160-165. |
[23] | NAKAMURA Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue[J]. Plant Cell Physiology, 2002, 43(7): 718-725. |
[24] | JAMES M G, DENYER K, MYERS A M. Starch synthesis in the cereal endosperm[J]. Current Opinion in Plant Biology, 2003, 6(3): 215-222. |
[25] | 姚姝, 张亚东, 刘燕清, 等. 水稻Wxmp背景下SSIIa和SSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11):1690-1 702. |
[26] | 姚姝, 张亚东, 刘燕清, 等. Wxmp基因背景下可溶性淀粉合成酶基因SSIIa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3):217-227. |
[27] | VERMA D K, SRIVASTAV P P. Extraction technology for rice volatile aroma compounds[M]// MEGHWAL M and GOYAL M R. Food engineering:Emerging issues, modeling, and applications. USA: Apple Academic Press, 2016: 246-284. |
[28] | VERMA D K, SRIVASTAV P P. Introduction to rice aroma, flavor, and fragrance[M].//VERMA D K and SRIVASTAV P P. Science and technology of aroma, flavour and fragrance in rice. USA: Apple Academic Press. 2018, 3-34. |
[29] | ROUTRAY W, RAYAGURU K. 2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products[J]. Food Reviews International, 2018, 34(6): 539-565. |
[30] | LEE Y S, OH Y, KIM T H, et al. Quantitation of 2-acetyl-1-pyrroline in aseptic-packaged cooked fragrant rice by HS-SPME/GC-MS[J]. Food Science & Nutrition, 2019, 7(1): 266-272. |
[31] | HE Q, PARK Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice[J]. Molecular Breeding, 2015, 35: 217. https://doi.org/10.1007/S11032-015-0412-4. |
[32] | SHAN Q W, ZHANG Y, CHEN K L, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13(6): 791-800. |
[33] | KOVACH M J, CALINGACION M N, FITZGERALD M A, et al. The origin and evolution of fragrance in rice (Oryza sativa L.)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14 444-14 449. |
[34] | SHAO G N, TANG S Q, CHEN M L, et al. Haplotype variation at Badh2, the gene determining fragrance in rice[J]. Genomics, 2013, 101(2): 157-162. |
[35] | CHEN S H, WU J, YANG Y, et al. The fgr gene responsible for rice fragrance was restricted within 69 kb[J]. Plant Science, 2006, 171(4): 505-514. |
[36] | CHEN S H, YANG Y, SHI W W, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1 850-1 861. |
[37] | CHEN M L, WEI X J, SHAO G N, et al. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2[J]. Plant Breeding, 2012, 131(5): 584-590. |
[38] | NIU X L, TANG W, HUANG W Z, et al. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2008, https://doi.org/10.1186/1471-2229-8-100. |
[39] | BRADBURY L M T, FITZGERALD T L, HENRY R J, et al. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3(3): 363-370. |
[40] | SHI W W, YANG Y, CHEN S H, et al. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties[J]. Molecular Breeding, 2008, 22(2): 185-192. |
[41] | SHAO G N, TANG A, TANG S Q, et al. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice[J]. Plant Breeding, 2011, 130(2): 172-176. |
[42] | AMARAWATHI Y, SINGH R, SINGH A K, et al. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2008, 21(9): 49-65. |
[43] | 闫影, 诸光明, 张丽霞, 等. 水稻香味基因分子标记的开发及应用[J]. 西北植物学报, 2015, 35(2):269-274. |
[44] | CHEN T, ZHANG Y D, ZHAO L, et al. A cleaved amplified polymorphic sequence marker to detect variation in Wx locus conditioning translucent endosperm in rice[J]. Rice Science, 2009, 16(2): 106-110. |
[45] | 陈涛, 骆名瑞, 张亚东, 等. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mp[J]. 中国水稻科学, 2013, 27(5):529-534. |
[46] | 王才林, 陈涛, 张亚东, 等. 通过分子标记辅助选择培育优良食味水稻新品种[J]. 中国水稻科学, 2009, 23(1):25-30. |
[47] | 姚姝, 刘燕清, 张亚东, 等. 水稻抗稻瘟病基因Pi-ta和Pi-b多重PCR体系的构建与应用[J]. 作物学报, 2014, 40(9):1565-1 571. |
[48] | 姚姝, 陈涛, 张亚东, 等. 分子标记辅助选择聚合水稻暗胚乳突变基因Wx-mq和抗条纹叶枯病基因Stv-bi[J]. 中国水稻科学, 2011, 18(2):102-109. |
[49] | 王才林, 张亚东, 朱镇, 等. 优质水稻新品种南粳46的选育与应用[J]. 中国稻米, 2008, 14(3):38-40. |
[50] | 王才林, 张亚东, 朱镇, 等. 优良食味粳稻新品种南粳5055的选育及利用[J]. 农业科技通讯, 2012(2):84-87. |
[51] | 王才林, 张亚东, 朱镇, 等. 优良食味粳稻新品种南粳9108的选育与利用[J]. 江苏农业科学, 2013, 41(9):86-88. |
[52] | 赵庆勇, 张亚东, 朱镇, 等. 优良食味中粳稻新品种南粳505的选育与应用[J]. 江苏农业科学, 2020, 48(13):103-106. |
[53] | 姚姝, 王才林, 张亚东, 等. 优良食味中熟中粳稻新品种南粳2728的选育与应用[J]. 中国稻米, 2020, 26(3):88-90. |
[54] | 张亚东, 朱镇, 陈涛, 等. 优良食味粳稻南粳5718的选育及主要特征特性[J]. 中国稻米, 2020, 26(4):100-102. |
[55] | 陈涛, 张亚东, 赵庆勇, 等. 优良食味抗病高产晚粳稻新品种南粳3908的选育和栽培技术[J]. 江苏农业科学, 2019, 47(19):72-74. |
[56] | 朱镇, 张亚东, 陈涛, 等. 优良食味粳稻新品种南粳晶谷的选育与应用[J]. 江苏农业科学, 2020, 48(19):79-82. |
[57] | 王建平, 乔中英, 谢裕林, 等. 苏香粳3号的选育及栽培技术[J]. 江西农业学报, 2011, 23(4):30-31. |
[58] | 陈培峰, 乔中英, 谢裕林, 等. 优质多抗香稻新品种‘苏香粳100’的选育与应用[J]. 作物研究, 2017, 31(1):15-17. |
[59] | 吴玉玲, 王健康, 王友霜, 等. 优良食味粳稻新品种徐稻9号的选育及高产栽培技术[J]. 北方水稻, 2017, 47(6):60-61. |
[60] | 顾敏燕. 水稻新品种宁粳8号特征特性及在张家港市的种植表现[J]. 种子科技, 2019, 37(6):145,147. |
[61] | 王雪刚. 优质粳稻早香粳1号的选育经过及栽培技术[J]. 现代农业科技, 2020(1):27,29. |
[62] | 兰国防, 陆燕, 柯瑷, 等. 优质粳稻常香粳1813的选育[J]. 中国种业, 2020(12):87-88. |
[63] | 江苏省粮食行业协会. T/JSLX 001.1-5-2018,江苏大米[S]. 南京: 江苏省粮食行业协会, 2018. |
[64] | 江苏省市场监督管理局. DB32/T 4056-2021,优良食味半糯粳稻品质[S]. 南京: 江苏省市场监督管理局, 2021. |
[65] | 江苏省市场监督管理局. DB32/T 4055-2021,优良食味半糯粳稻生产技术规程[S]. 南京: 江苏省市场监督管理局, 2021. |
[66] | 刘信, 刘春青, 王玉玺, 等. 我国优质稻品牌化发展现状及建议[J]. 中国稻米, 2022, 28(2):12-15. |
[67] | 高荣村, 陆金根, 李鹏, 等. 光身软香米新品种嘉58特征特性及栽培技术[J]. 中国稻米, 2014, 20(2):74-75. |
[68] | YAO S, ZHANG Y D, LIU Y Q, et al. Effects of soluble starch synthase genes on eating and cooking quality in semi waxy japonica rice with Wxmp[J]. Food Production, Processing and Nutrition, 2020, 2: 22. |
[69] | LIU L L, MA XD, LIU S J, et al. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace[J]. Plant Molecular Biology, 2009, 71(6): 609-626. |
[70] | ZHANG C Q, YANG Y, CHEN S J, et al. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2020, doi: 10.1111/jipb.13010. |
[71] | ZHANG C Q, ZHU J H, CHEN S J, et al. Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 2019, 12 (8): 1 157-1 166. |
[72] | ZHOU H, XIA D, ZHAO D, et al. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2020, doi: 10.1111/jipb.13011. |
[73] | HUANG L C, LI Q F, ZHANG C Q, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2 164-2 166. |
[74] | XU Y, LIN Q P, LI X F, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[75] | ZENG D C, LIU T L, MA X L, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improvesgrain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2 385-2 387. |
[76] | 于苗苗, 戴正元, 潘存红, 等. 广谱稻瘟病抗性基因Pigm和Pi2的抗谱差异及与Pi1的互作效应[J]. 作物学报, 2013, 39(11):1927-1 934. |
[77] | 张善磊, 孙旭超, 陈涛, 等. Pi-ta, Pi-5, Pi-km和Pi-b基因在粳稻品种(系) 中的分布及对穗颈瘟的抗性[J]. 江苏农业学报, 2018, 34(5):961-971. |
[78] | 陈涛, 孙旭超, 张善磊, 等. 稻瘟病广谱抗性基因 Pigm 特异性分子标记的开发和应用[J]. 中国水稻科学, 2020, 34(1):28-36. |
[79] | ZHANG L, YU H, MA B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nature Communications, 2017, 8: 14 789. |
[80] | WANG Y X, SHANG LG, YU H, et al. A strigolactone biosynthesis gene contributed to the green revolution in rice[J]. Molecular Plant. 2020, 13(6): 923-932. |
[81] | ZHANG D P, ZHANG M Y, ZHOU Y, et al. The rice G protein gamma subunit DEP1/qPE9-1 positively regulates grain-filling process by increasing auxin and cytokinin content in rice grains[J]. Rice, 2019, doi: 10.1186/s12284-019-0344-4. |
[82] | ZHANG Y D, ZHU Z, ZHAO Q Y, et al. Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice[J]. Genetics and Molecular Research, 2016, doi: 10.4238/gmr.15017587. |
[83] | 吕川根, 邹江石. 两系法杂交稻两优培九育种的理论与实践[J]. 中国农业科学, 2016, 49(9):1635-1 645. |
[84] | 张洪熙, 戴正元, 赵步洪, 等. 高产优质中籼稻扬稻6号“理想株型”的构建[J]. 扬州大学学报(农业与生命科学版), 2008, 29(3):1-6. |
[85] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4):311-325. |
[1] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[2] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[3] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[4] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[5] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
[6] | PAN Yangyang, HUANG Daoqiang, WANG Chongrong, WANG Zhidong, LI Hong, ZHOU Degui, CHEN Yibo, ZHAO Lei, GONG Rong, ZHOU Shaochuan. Analysis on the Characteristics of Approved Conventional Rice Varieties in Guangdong Province in the Past 40 Years [J]. China Rice, 2023, 29(3): 74-73. |
[7] | HE Xiuying, LIU Wei, LU Zhanhua, LU Dongbai, WANG Xiaofei, WANG Shiguang, FANG Zhiqiang. Breeding and Application of a New High Yield Fragrant Rice Variety Yuexiang 430 with High Grain Quality [J]. China Rice, 2023, 29(2): 108-110. |
[8] | LI Maobai, CAO Liming, WANG Qiuying, LIU Kang, SONG Zhongming, YAO Danqing, GU Qinqin, LIU Jian, LOU Jianfeng. Development Status and Countermeasures of High Quality Japonica Rice Industry in Shanghai [J]. China Rice, 2023, 29(2): 120-122. |
[9] | LIU Youhong, TANG Ao, ZHANG Xijuan, DONG Wenjun, LIU Kai, WANG Wenlong, XU Yingzhe, MENG Ying, LAI Yongcai. Effects of Indica-type Cytoplasmic on Quality of Japanica Hybrid Rice F1 [J]. China Rice, 2023, 29(2): 59-64. |
[10] | WANG Xuhui, HE Xianbiao, OUYANG Younan, XU Qiangqiang, YU Pengcheng, QI Wen, JIANG Hailing, ZHU Defeng, QIN Yebo. Performance of Grain Yield, Quality and Growth Characteristics of Early Japonica Rice from Northeast China Planted in Zhejiang Southern Region [J]. China Rice, 2023, 29(2): 65-70. |
[11] | WANG Shiqiang, HE Dengmei, ZHAO Haihong, YANG Shanwei, YI Yuzhuo, FU Yongming, ZHENG Shusheng, DING Xiwu, HE Qing, ZHENG Kaiwen, DU Tingting, GU Tianyue, TANG Xinran, WANG Yang, PAN Guojun. Plant-type Characteristics in Different Yield Early Japonica Rice Varieties in Cold Region [J]. China Rice, 2023, 29(2): 71-75. |
[12] | LIAO Xin, LIANG Yugang, CHEN Zhifeng, MENG Xiangjie, XIONG Rui, HUANG Huang, YU Zhengjun. Technical Points of Tobacco-rice Rotation Mode Coupling Chicken and Fish Culture [J]. China Rice, 2023, 29(1): 108-112. |
[13] | XU Shuying. High Yield and High Efficiency Technology of Ecological Three-dimensional Planting and Breeding “Rice-fish-loach” and “Rice-fish-soft shelled turtle” in Paddy Field [J]. China Rice, 2023, 29(1): 117-120. |
[14] | HAO Rongrong, FENG Junze, WANG Song, ZHU Caizhang, WANG Xueyan, ZHOU Meng, DANG Chengcheng, YU Sidie, MU Qilin, TIAN Xiaohai. Demonstration Performance of Long-grain High-quality Japonica Rice Exiang 2 and High-yield Cultivation Techniques of 600 kg/667 m2 [J]. China Rice, 2023, 29(1): 134-137. |
[15] | CHEN Yanhong, HU Biaolin, ZHANG Fantao. Research Status of Genetic Analysis of Rice Quality [J]. China Rice, 2023, 29(1): 44-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||