[1] |
GODFRAY H C, BEDDINGTON J R, CRUTE I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818.
|
[2] |
HUANG X H, KURATA N, WEI X H, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501.
|
[3] |
胡培松, 翟虎渠, 万建民. 中国水稻生产新特点与稻米品质改良[J]. 中国农业科技导报, 2002, 4(4):33-39.
|
[4] |
CHEN R Z, DENG Y W, DING Y L, et al. Rice functional genomics: decades' efforts and roads ahead[J]. Science China Life Sciences, 2022, 65(1): 33-92.
|
[5] |
HICKEY L T, HAFEEZ A N, ROBINSON H, et al. Breeding crops to feed 10 billion[J]. Nature Biotechnology, 2019, 37(7): 744-754.
|
[6] |
BAILEY-SERRES J, PARKER J E, AINSWORTH E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118.
|
[7] |
吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10):841-857.
|
[8] |
邓启云, 袁隆平, 梁凤山, 等. 野生稻高产基因及其分子标记辅助育种研究[J]. 杂交水稻, 2004, 19(1):6-10.
|
[9] |
ZENG D L, TIAN Z X, RAO Y C, et al. Rational design of high-yield and superior-quality rice[J]. Nature Plants, 2017, 3: 17 031.
|
[10] |
LI W D, Li K, HUANG Y, et al. SMRT sequencing of the Oryza rufipogon genome reveals the genomic basis of rice adaptation[J]. Communications Biology, 2020, 3(1): 167.
|
[11] |
ZHAO Q, FENG Q, LU H Y, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nature Genetics, 2018, 50(2): 278-284.
|
[12] |
WING R A, PURUGGANAN M D, ZHANG Q F. The rice genome revolution: from an ancient grain to Green Super Rice[J]. Nature Reviews Genetics, 2018, 19(8): 505-517.
|
[13] |
YANG Z Y, XU Z J, YANG Q W, et al. Conservation and utilization of genetic resources of wild rice in China[J]. Rice Science, 2022, 29(3): 216-224.
|
[14] |
STEIN J C, YU Y, COPETTI D, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza[J]. Nature Genetics, 2018, 50(2): 285-296.
|
[15] |
翟李楠, 唐清杰, 周世圳, 等. 海南普通野生稻稻瘟病抗性鉴定与评价[J]. 植物遗传资源学报, 2024, 25(1):39-51.
|
[16] |
李莉萍, 应东山, 张如莲. 野生稻优良基因资源的研究与应用进展[J]. 热带农业科学, 2014, 34(1):34-41.
|
[17] |
XIE X R, DU H L, TANG H W, et al. A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice[J]. Science China Life Sciences, 2021, 64(2): 282-293.
|
[18] |
HUANG J F, ZHANG Y L, LI Y P, et al. Haplotype-resolved gapless genome and chromosome segment substitution lines facilitate gene identification in wild rice[J]. Nature Communications, 2024, 15(1): 4 573.
|
[19] |
杨庆文, 张万霞, 时津霞, 等. 广东高州普通野生稻(Oryza rufipogon Griff)的遗传多样性和居群遗传分化研究[J]. 植物遗传资源学报, 2004, 5(4):315-319.
|
[20] |
李晨, 潘大建, 毛兴学, 等. 用SSR标记分析高州野生稻的遗传多样性[J]. 科学通报, 2006, 51(5):551-558.
|
[21] |
陈志雄, 王兰, 吴锦文, 等. 丁氏稻种资源有利基因挖掘与创新研究进展[J]. 华南农业大学学报, 2023, 44(5):649-658.
|
[22] |
汤圣祥, 魏兴华, 徐群. 国外对野生稻资源的评价和利用进展[J]. 植物遗传资源学报, 2008, 9(2):223-229.
|
[23] |
张万霞, 杨庆文. 中国野生稻收集,鉴定和保存现状[C]. 第一届全国野生稻大会, 2003.
|
[24] |
廉小平, 黄光福, 张玉娇, 等. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9):765-780.
|
[25] |
HENRY R J. Wild rice research: Advancing plant science and food security[J]. Molecular Plant, 2022, 15(4): 563-565.
|
[26] |
ZAMIR D. Improving plant breeding with exotic genetic libraries[J]. Nature Reviews Genetics, 2001, 2: 983-989.
|
[27] |
LONG W X, LI N W, JIN J, et al. Resequencing-based QTL mapping for yield and resistance traits reveals great potential of Oryza longistaminata in rice breeding[J]. The Crop Journal, 2023, 11(5): 1 541-1 549.
|