中国稻米 ›› 2024, Vol. 30 ›› Issue (5): 30-40.DOI: 10.3969/j.issn.1006-8082.2024.05.004
韩明珍1,2,#(), 王静2,3,#(
), 赵均良2, 周玲艳1,*(
), 马雅美2,*(
)
收稿日期:
2024-07-03
出版日期:
2024-09-20
发布日期:
2024-09-12
通讯作者:
*lingyanzh@163.com;作者简介:
# 共同第一作者:hmz109927@163.com; wjing1129@foxmail.com
基金资助:
HAN Mingzhen1,2,#(), WANG Jing2,3,#(
), ZHAO Junliang2, ZHOU Lingyan1,*(
), MA Yamei2,*(
)
Received:
2024-07-03
Published:
2024-09-20
Online:
2024-09-12
Contact:
*lingyanzh@163.com;About author:
# Co-first author hmz109927@163.com; wjing1129@foxmail.com
摘要:
随着全球气候变暖和人口不断增长,农业用水增加和可利用淡水资源减少使得水稻生产正面临资源与环境的严峻挑战。在众多环境胁迫中,干旱胁迫是影响农业生产的主要因素之一,严重危害水稻的产量和品质。随着分子生物技术的飞速发展,与干旱胁迫相关的水稻数量性状位点、功能基因被不断挖掘。本文综述了水稻抗旱相关QTL的鉴定、克隆以及抗旱分子机理研究等方面的进展,以期为水稻抗旱研究和分子育种提供参考。
中图分类号:
韩明珍, 王静, 赵均良, 周玲艳, 马雅美. 水稻抗旱相关功能基因的克隆及分子机制研究进展[J]. 中国稻米, 2024, 30(5): 30-40.
HAN Mingzhen, WANG Jing, ZHAO Junliang, ZHOU Lingyan, MA Yamei. Advance in Cloning and Molecular Mechanism of Drought Tolerance Related Functional Genes in Rice[J]. China Rice, 2024, 30(5): 30-40.
[1] | 山仑, 康绍忠, 吴普特. 中国节水农业[M]. 北京: 中国农业出版社, 2004. |
[2] | 程旺大, 赵国平, 张国平, 等. 水稻节水栽培的生态和环境效应[J]. 农业工程学报, 2002, 18(1):191-194. |
[3] | VENUPRASAD R, BOOL M E, QUIATCHON L, et al. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1[J]. Molecular Breeding, 2012, 30: 535-547. |
[4] | BERNIER J, KUMAR A, RAMAIAH V, et al. A large-effect QTL for grain yield under reproductive‐stage drought stress in upland rice[J]. Crop Science, 2007, 47(2): 507-516. |
[5] | KALDATE R, VERMA R K, CHETIA S K, et al. Mapping of QTLs associated with yield and related traits under reproductive stage drought stress in rice using SNP linkage map[J]. Molecular Biology Reports, 2023, 50(8): 6 349-6 359. |
[6] | KIM T H, HUR Y J, HAN S I, et al. Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice[J]. Plant Science, 2017, 256: 131-138. |
[7] | BARIK S R, PANDIT E, MOHANTY S P, et al. Genetic mapping of physiological traits associated with terminal stage drought tolerance in rice[J]. BMC Genetics, 2020, 21: 1-12. |
[8] | KATO Y, HIROTSU S, NEMOTO K, et al. Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture[J]. Euphytica, 2008, 160: 423-430. |
[9] | 姜雪, 马孝松, 罗利军, 等. 水稻苗期模拟干旱胁迫条件下表型性状QTL定位[J]. 作物杂志, 2016(5):31-37. |
[10] | BHATTARAI U, SUBUDHI P K. Genetic analysis of yield and agronomic traits under reproductive-stage drought stress in rice using a high-resolution linkage map[J]. Gene, 2018, 669: 69-76. |
[11] | UGA Y, SUGIMOTO K, OGAWA S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9): 1 097-1 102. |
[12] | UGA Y, YAMAMOTO E, KANNO N, et al. A major QTL controlling deep rooting on rice chromosome 4[J]. Scientific Reports, 2013, 3: 3 040. |
[13] | UGA Y, KITOMI Y, YAMAMOTO E, et al. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1[J]. Rice, 2015, 8: 8. |
[14] | KITOMI Y, KANNO N, KAWAI S, et al. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1[J]. Rice, 2015, 8: 16. |
[15] | LOU Q J, CHEN L, MEI H W, et al. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice[J]. Journal of Experimental Botany, 2015, 66(15): 4 749-4 757. |
[16] | KLEIN R J, ZEISS C, CHEW E Y, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science, 2005, 308(5720): 385-389. |
[17] | 夏朵. 水稻粒型QTL的定位及粒长基因GL3.3的克隆与功能研究[D]. 武汉: 华中农业大学, 2019. |
[18] | GUO Z L, YANG W N, CHANG Y, et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice[J]. Molecular Plant, 2018, 11(6): 789-805. |
[19] | ZHAO Y, ZHANG H L, XU J L, et al. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions[J]. PLoS Genetics, 2018, 14(8): e1007521. |
[20] | YI Y M, HASSAN M A, CHENG X X, et al. QTL mapping and analysis for drought tolerance in rice by genome-wide association study[J]. Frontiers in Plant Science, 2023, 14: 1 223 782. |
[21] | LI X K, GUO Z L, LV Y, et al. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study[J]. PLoS Genetics, 2017, 13(7): e1006889. |
[22] | WANG H J, YE T T, GUO Z L, et al. A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice[J]. Nature Communications, 2024, 15(1): 2 514. |
[23] | SUN X M, XIONG H Y, JIANG C H, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, 13(1): 4 265. |
[24] | NOCTOR G, REICHHELD J P, FOYER C H. ROS-related redox regulation and signaling in plants[J]. Seminars in Cell & Developmental Biology, 2018, 80: 3-12. |
[25] | SOHAG A A M, TAHJIB-UL-ARIF M, BRESTIC M, et al. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice[J]. Plant Soil and Environment, 2020, 66(1): 7-13. |
[26] | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[27] | LI S C. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme[J]. Redox Biology, 2023, 64: 102 789. |
[28] | ZHANG Z G, ZHANG Q A, WU J X, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PLoS One, 2013, 8(2): e57472. |
[29] | JEON Y A, LEE H S, KIM S H, et al. Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster[J]. Journal of Experimental Botany, 2021, 72(12): 4 254 -4 268. |
[30] | JOO J, LEE Y H, SONG S I. Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively[J]. Journal of Plant Biology, 2014, 57: 375-382. |
[31] | SOUSA R H V, CARVALHO F E L, RIBEIRO C W, et al. Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2O2 induced by CAT deficiency in rice[J]. Plant, Cell & Environment, 2015, 38(3): 499-513. |
[32] | LI J Y, MENG L J, REN S H, et al. OsGSTU17, a tau class glutathione S-transferase gene, positively regulates drought stress tolerance in Oryza sativa[J]. Plants, 2023, 12(17): 3166. |
[33] | HUANG X X, HUANG L P, ZHAO X X, et al. A J-Protein OsDjC46 interacts with ZFP36 to participate in ABA-mediated antioxidant defense in rice[J]. Antioxidants, 2022, 11(2): 207. |
[34] | NING J, LI X H, HICKS L M, et al. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice[J]. Plant Physiology, 2010, 152(2): 876-890. |
[35] | YOU J, ZONG W, HU H H, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiology, 2014, 166(4): 2 100-2 114. |
[36] | CHEN F H, ZHANG H M, LI H, et al. IPA1 improves drought tolerance by activating SNAC1 in rice[J]. BMC Plant Biology, 2023, 23(1): 55. |
[37] | YIN X M, HUANG L F, ZHANG X, et al. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. Journal of Plant Biology, 2015, 58: 68-73. |
[38] | MAHMOOD T, ABDULLAH M, AHMAR S, et al. Incredible role of osmotic adjustment in grain yield sustainability under water scarcity conditions in wheat (Triticum aestivum L)[J]. Plants, 2020, 9(9): 1 208. |
[39] | JOSHI R, SAHOO K K, SINGH A K, et al. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions[J]. Journal of Experimental Botany, 2020, 71(2): 653-668. |
[40] | SELVARAJ M G, ISHIZAKI T, VALENCIA M, et al. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field[J]. Plant Biotechnology Journal, 2017, 15(11): 1 465-1 477. |
[41] | SU J, WU R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis[J]. Plant Science, 2004, 166(4): 941-948. |
[42] | CABIB E, LELOIR L F. The biosynthesis of trehalose phosphate[J]. The Journal of Biological Chemistry, 1958, 231(1): 259-75. |
[43] | GODDIJN O J M, VAN DUN K. Trehalose metabolism in plants[J]. Trends in Plant Science, 1999, 4(8): 315-319. |
[44] | LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234: 1 007-1 018. |
[45] | JIANG D D, CHEN W T, GAO J E, et al. Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice[J]. Plant Biotechnology Reports, 2019, 13: 285-292. |
[46] | 杨晓玲, 郭守华, 杨晴, 等. 转BADH基因水稻幼苗抗旱性研究[J]. 华北农学报, 2007, 22(3):60-64. |
[47] | DURE III L, GREENWAY S C, GALAU G A. Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry, 1981, 20(14): 4 162-4 168. |
[48] | 薛亚莉, 魏晓双, 周海连, 等. 水稻LEA_2家族的鉴定与表达谱分析[J]. 华中农业大学学报, 2021, 40(2):93-102. |
[49] | DUAN J L, CAI W M. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance[J]. PLoS One. 2012, 7(9): e45117. |
[50] | XIAO B Z, HUANG Y M, TANG N, et al. Over-expression of a LEA gene in rice improves drought resistance under the field conditions[J]. Theoretical and Applied Genetics, 2007, 115: 35-46. |
[51] | HUANG L P, ZHANG M Y, JIA J, et al. An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza sativa L.[J]. Plant and Cell Physiology, 2018, 59(5): 916-929. |
[52] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2023, 38(4):335-349. |
[53] | ZOU J, LIU C F, LIU A L, et al. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice[J]. Journal of Plant Physiology, 2012, 169(6): 628-635. |
[54] | DEY A, SAMANTA M K, GAYEN S, et al. Enhanced gene expression rather than natural polymorphism in coding sequence of the OsbZIP23 determines drought tolerance and yield improvement in rice genotypes[J]. PLoS One, 2016, 11(3): e0150763. |
[55] | TANG Y H, BAO X X, ZHI Y L, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science, 2019, 10: 168. |
[56] | XIONG H Y, LI J J, LIU P L, et al. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice[J]. PLoS One, 2014, 9(3): e92913. |
[57] | ZHAO W J, WANG X Y, ZHANG Q, et al. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice[J]. Plant Physiology, 2022, 189(2): 1 050-1 064. |
[58] | XIANG Y, HUANG Y M, XIONG L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J]. Plant Physiology, 2007, 144(3): 1 416-1 428. |
[59] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1 227-1 281. |
[60] | 李斌, 黄进, 王丽, 等. 环境胁迫及相关植物激素在水稻根毛发育过程中的作用[J]. 中国水稻科学, 2020, 34(4):287-299. |
[61] | HUANG Y, GUO Y M, LIU Y T, et al. 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice[J]. Frontiers in Plant Science, 2018, 9: 162. |
[62] | ZHANG Y, WANG X P, LUO Y Z, et al. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response[J]. The Crop Journal, 2020, 8(3): 480-491. |
[63] | MIAO J, LI X F, LI X B, et al. OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice[J]. New Phytologist, 2020, 227(5): 1 417-1 433. |
[64] | SRIVASTAVA A K, ZHANG C J, CAINE R S, et al. Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice[J]. The Plant Journal, 2017, 92(6): 1 031-1 043. |
[65] | TANG N, ZHANG H, LI X H, et al. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1 755-1 768. |
[66] | YANG S Q, XU K J, CHEN S F, et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19: 1-15. |
[67] | WANG Y X, DU F P, WANG J, et al. Molecular dissection of the gene OsGA2ox8 conferring osmotic stress tolerance in rice[J]. International Journal of Molecular Sciences, 2021, 22(17): 9 107. |
[68] | LO S F, HO T H D, LIU Y L, et al. Ectopic expression of specific GA 2 oxidase mutants promotes yield and stress tolerance in rice[J]. Plant Biotechnology Journal, 2017, 15(7): 850-864. |
[69] | ZHANG Z J, LI F, LI D J, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought[J]. Planta, 2010, 232: 765-774. |
[70] | DU H, WU N, CUI F, et al. A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice[J]. The Plant Journal, 2014, 78(5): 834-849. |
[71] | ZHANG Y, LI J, CHEN S J, et al. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice[J]. Molecular Genetics and Genomics, 2020, 295: 941-956. |
[72] | WAN L Y, ZHANG J F, ZHANG H W, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One, 2011, 6(9): e25216. |
[73] | ZHANG Q, LI J J, ZHANG W J, et al. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J]. The Plant Journal, 2012, 72(5): 805-816. |
[74] | WANG F B, NIU H F, XIN D Q, et al. OsIAA18, an Aux/IAA transcription factor gene, is involved in salt and drought tolerance in rice[J]. Frontiers in Plant Science, 2021, 12: 738 660. |
[75] | ZHANG A Y, YANG X, LU J, et al. OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway[J]. Plant Science, 2021, 308: 110 903. |
[76] | 玉山江·麦麦提, 熊叶辉, 麦合木提江·米吉提, 等. 转IPT基因水稻的抗旱性研究[J]. 中国农业科技导报, 2012, 14(6):30-35. |
[77] | UMESH D K, PAL M. Differential role of jasmonic acid under drought and heat stress in rice (Oryza sativa)[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(1S): 2 626-2 631. |
[78] | FU J, WU H, MA S Q, et al. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Frontiers in Plant Science, 2017, 8: 2108. |
[79] | SEO J S, JOO J, KIM M J, et al. OsbHLH148, a basic helix‐loop‐helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. The Plant Journal, 2011, 65(6): 907-921. |
[80] | SINGH A P, MANI B, GIRI J. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice[J]. Plant Physiology and Biochemistry, 2021, 162: 161-170. |
[81] | SHANMUGAM S, BOYETT V A, KHODAKOVSKAYA M. Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene[J]. PLoS One, 2021, 16(10): e0258171. |
[82] | GU H W, ZHANG K M, CHEN J, et al. OsFTL4, an FT-like gene, regulates flowering time and drought tolerance in rice (Oryza sativa L.)[J]. Rice, 2022, 15(1): 47. |
[83] | LI Q, ZHOU L Y, CHEN Y N, et al. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid[J]. The Plant Cell, 2022, 34(11): 4 293-4 312. |
[84] | HU H H, DAI M Q, YAO J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of United States of America, 2006, 103(35): 12 987-12 992. |
[85] | YOU J, ZONG W, LI X K, et al. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. |
[86] | ZHAO J H, ZHANG W, DA SILVA J A T, et al. Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density[J]. Planta, 2021, 254: 1-15. |
[87] | WANG C L, CHEN S, DONG Y P, et al. Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice[J]. New Phytologist, 2020, 226(4): 1 042-1 054. |
[88] | 李燕, 李良良, 丁贵杰. 植物水通道蛋白对高温干旱胁迫的响应[J/OL]. 分子植物育种, 2024. https://link.cnki.net/urlid/46.1068.S.20240422.1440.007. |
[89] | LI Y X, HAN S C, SUN X M, et al. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice[J]. Journal of Integrative Plant Biology, 2023, 65(4): 918-933. |
[90] | BAI J Q, WANG X, YAO X H, et al. Rice aquaporin OsPIP2; 2 is a water‐transporting facilitator in relevance to drought‐tolerant responses[J]. Plant Direct, 2021, 5(8): e338. |
[91] | NADA R M, ABOGADALLAH G M. Contrasting root traits and native regulation of aquaporin differentially determine the outcome of overexpressing a single aquaporin (OsPIP2; 4) in two rice cultivars[J]. Protoplasma, 2020, 257(2): 583-595. |
[92] | ISLAM M A, DU H, NING J, et al. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance[J]. Plant Molecular Biology, 2009, 70: 443-456. |
[93] | QIN B X, TANG D, HUANG J, et al. Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane[J]. Molecular Plant, 2011, 4(6): 985-995. |
[94] | ZHOU X Y, LI L Z, XIANG J H, et al. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice[J]. PLoS One, 2015, 10(1): e116676. |
[95] | ZHANG D, YANG H F, WANG X C, et al. Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis[J]. New Phytologist, 2020, 225(5): 2094-2107. |
[96] | GAO X Y, ZHANG Y, ZHANG H S, et al. A β-ketoacyl-CoA synthase OsCUT1 confers increased drought tolerance in rice[J]. Rice Science, 2022, 29(4): 353-362. |
[97] | GUAN L L, XIA D N, HU N, et al. OsFAR1 is involved in primary fatty alcohol biosynthesis and promotes drought tolerance in rice[J]. Planta, 2023, 258(2): 24. |
[98] | WANG Y H, WAN L Y, ZHANG L X, et al. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice[J]. Plant Molecular Biology, 2012, 78: 275-288. |
[99] | ZHOU X Y, JENKS M A, LIU J, et al. Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit[J]. Plant Molecular Biology Reporter, 2014, 32: 719-731. |
[100] | ZHU X Y, XIONG L Z. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17 790-17 795. |
[101] | XIA K F, OU X J, GAO C Z, et al. OsWS1 involved in cuticular wax biosynthesis is regulated by osa‐miR1848[J]. Plant, Cell & Environment, 2015, 38(12): 2 662-2 673. |
[102] | WANG Z Y, TIAN X J, ZHAO Q Z, et al. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice[J]. The Plant Cell, 2018, 30(1): 228-244. |
[103] | GU X Y, GAO S X, LI J, et al. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice[J]. Plant Physiology and Biochemistry, 2021, 169: 269-279. |
[104] | SHIM Y, SEONG G, CHOI Y, et al. Suppression of cuticular wax biosynthesis mediated by rice LOV KELCH REPEAT PROTEIN 2 supports a negative role in drought stress tolerance[J]. Plant, Cell & Environment, 2023, 46(5): 1 504-1 520. |
[105] | ZHOU L G, LIU Z C, LIU Y H, et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. ScientificReports, 2016, 6(1): 30 264. |
[106] | CHANG Y, FANG Y J, LIU J H, et al. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice[J]. Nature Communications, 2024, 15(1): 5 877. |
[107] | YANG L J, XU L, GUO J Z, et al. SNAC1-OsERF103-OsSDG705 module mediates drought response in rice[J]. New Phytologist, 2024, 241(6): 2 480-2 494. |
[108] | YU X Z, WANG L N, XIE Y J, et al. OsBBP1, a newly identified protein containing DUF630 and DUF632 domains confers drought tolerance in rice[J]. Plant Science, 2024, 345: 112 119. |
[109] | JIA S Z, WANG C Y, SUN W Y, et al. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice[J]. Plant Physiology and Biochemistry, 2024: 108 794. |
[1] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[2] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
[3] | 夏昕彤, 戴淑婷, 张萌恩, 王旭东, 何丽芝, 柳丹. 根表铁膜对水稻体内重金属迁移积累影响的研究进展[J]. 中国稻米, 2024, 30(6): 15-22. |
[4] | 陈书融, 何禹畅, 秦碧蓉, 王婕, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 金千瑜, 朱练峰. 稻田配施氮肥增效剂的应用研究进展[J]. 中国稻米, 2024, 30(6): 23-28. |
[5] | 王兴宇, 王静, 徐群, 章孟臣, 王珊, 孙燕飞, 魏兴华, 杨窑龙, 郭晓红, 冯跃. 利用高密度遗传图谱定位两种不同环境的水稻剑叶形态性状QTL差异[J]. 中国稻米, 2024, 30(6): 29-34. |
[6] | 陈丽, 孙建昌, 王昕. 基于BSA-seq法的水稻稻瘟病抗性基因定位[J]. 中国稻米, 2024, 30(6): 35-41. |
[7] | 刘琳帅, 王迪, 卞景阳, 孙兴荣, 邵凯, 韩冰, 来永才, 刘凯. 水稻耐苏打盐碱性鉴定方法的研究进展[J]. 中国稻米, 2024, 30(6): 42-48. |
[8] | 宋平原, 刘君权, 杨健, 周亚, 胡兵, 王小伟, 汪本福, 张枝盛, 程建平. 不同镉胁迫下施用纳米硅和活性硅对水稻的降镉效应[J]. 中国稻米, 2024, 30(6): 49-54. |
[9] | 张发丽, 王沁, 曾涛, 蒋明金, 何志旺, 张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响[J]. 中国稻米, 2024, 30(6): 55-59. |
[10] | 苏仙月, 蒋恬毅, 普雪, 蒋志豪, 刘涛, 文建成, 李丹丹, 徐笑宇. 云南水稻种质资源的遗传多样性与米糠脂质特性检测分析[J]. 中国稻米, 2024, 30(6): 66-73. |
[11] | 蔡炜, 秦缘, 陈浩田, 林晨语, 杨建昌, 张伟杨. 干湿交替灌溉和生物质炭施用对稻田碳汇与甲烷排放的影响及其机理研究进展[J]. 中国稻米, 2024, 30(6): 7-14. |
[12] | 王岩, 高美琦, 李荣平, 赵先丽, 张美玲, 卞景阳. Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究[J]. 中国稻米, 2024, 30(6): 74-81. |
[13] | 楼坚锋, 刘建. 杂交粳稻花优14种子质量快速预测方法研究[J]. 中国稻米, 2024, 30(6): 87-90. |
[14] | 江云珠, 楼光明, 杨帅, 李真, 姚佳蓉, 戴芬. 稻鳖综合种养关键技术及其产品质量安全管控分析[J]. 中国稻米, 2024, 30(6): 91-94. |
[15] | 阳湘林, 李建国, 陈丽群, 陈剑宝, 钟乐辉, 刘志清, 程乐根. 洞庭湖区水稻高效机械化育插秧技术集成研究与示范推广[J]. 中国稻米, 2024, 30(6): 95-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||