中国稻米 ›› 2024, Vol. 30 ›› Issue (5): 41-48.DOI: 10.3969/j.issn.1006-8082.2024.05.005
收稿日期:
2024-07-30
出版日期:
2024-09-20
发布日期:
2024-09-12
通讯作者:
*zhoulian@gdaas.cn基金资助:
ZHOU Xu1,2, YANG Tifeng2, LIU Zupei1, ZHOU Lian2,*()
Received:
2024-07-30
Published:
2024-09-20
Online:
2024-09-12
Contact:
*zhoulian@gdaas.cn摘要:
低温萌发力是水稻适应极端天气、特别是水稻直播生产不可或缺的一个重要性状。本文综述了近年来关于水稻低温萌发力的鉴定方法、生理机制、分子克隆和遗传育种等方面的研究进展,提出了研究趋势与展望。在水稻低温萌发力鉴定方面,多采用13 ℃~15 ℃试验温度、低温萌发第10 d的萌发率为评价指标。利用图位克隆和全基因组关联分析(GWAS)等技术手段已鉴定的水稻低温萌发力相关QTL超过100个,但实现目的基因克隆的仅4个,关于分子机制方面的研究极少。当前水稻低温萌发力强的品种主要是从育成品种中筛选而来。水稻低温萌发生理机理和分子机理的研究将有助于提高低温萌发鉴定及其育种应用。
中图分类号:
周旭, 杨梯丰, 刘祖培, 周炼. 水稻低温发芽力的研究进展与展望[J]. 中国稻米, 2024, 30(5): 41-48.
ZHOU Xu, YANG Tifeng, LIU Zupei, ZHOU Lian. Research Progress and Prospect of Low Temperature Germinability in Rice[J]. China Rice, 2024, 30(5): 41-48.
[1] | 汪向东, 陈再高. 水稻直播生产现状及发展对策[J]. 现代农业科技, 2019(15):49-51. |
[2] | ZHANG Z Y, LI J J, PAN Y H, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nature Communications, 2017, 8(1): 1-13. |
[3] | 徐福荣, 戴陆园, 叶昌荣. 水稻耐冷性研究的概况与展望[J]. 作物杂志, 2000(1):4-5. |
[4] | 井上重陽. 種子の發芽慍度に關する研究: 第一報[J]. 日本作物学会紀事, 1935, 7(2): 200-217. |
[5] | 金润洲, 孙仁淑, 尹胜国, 等. 水稻品种低温发芽力鉴定方法的研究[J]. 吉林农业科学, 1988(1):1-5. |
[6] | 杨梯丰, 张子怡, 董景芳, 等. 水稻低温发芽力QTLqLTG3-1基因内分子标记的开发及其在华南籼稻中的应用评价[J]. 广东农业科学, 2021, 48(10):32-41. |
[7] | 丁杰荣, 孙炳蕊, 于航, 等. 广东水稻核心种质耐冷萌发全基因组关联分析[J]. 植物遗传资源学报, 2022, 23(5):1425-1 437. |
[8] | 周炼, 陈洛, 吴伟, 等. 一个锌指结合蛋白编码基因调控水稻种子萌发[J]. 广东农业科学, 2022, 49(9):1-9. |
[9] | 陈兵先, 张琪, 戴彰言, 等. 水杨酸引发提高低温下水稻种子萌发活力的生理与分子效应[J]. 中国农业科学, 2024, 57(7):1220-1 236. |
[10] | BEWLEY J D. Seed germination and dormancy[J]. Plant Cell, 1997, 9(7): 1 055-1 066. |
[11] | 韩超. 水稻种子萌发的蛋白质组学研究[D]. 北京: 中国科学院研究生院, 2015. |
[12] | MA Y Y, ZHANG Y L, LU J, et al. Roles of plant soluble sugars and their responses to plant cold stress[J]. African Journal of Biotechnology, 2009, 8(10): 2 004-2 010. |
[13] | ZHANG Z L, XIE Z, ZOU X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiology, 2004, 134(4): 1 500-1 513. |
[14] | LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234: 1 007-1 018. |
[15] | YU H H, TENG Z N, LIU B H, et al. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature[J]. Plant Physiology, 2024, 194(3): 1 815-1 833. |
[16] | LI W J, NIU Y Z, ZHENG Y Y, et al. Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops[J]. Frontiers in Plant Science, 2022, 13: 826 809. |
[17] | THAPA R, TABIEN R E, JOHNSON C D, et al. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress[J]. BMC Genomics, 2023. https://doi.org/10.1186/s12864-023-09262-z. |
[18] | BONNECARRÉRE V, BORSANI O, DÍAZ P, et al. Response to photoxidative stress induced by cold in japonica rice is genotype dependent[J]. Plant Science, 2011, 180(5): 726-732. |
[19] | YANG M, YANG J, SU L, et al. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress[J]. Plant Science, 2019, 289: 110 282. |
[20] | HONG Y F, HO T H D, WU C F, et al. Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals[J]. The Plant Cell, 2012, 24(7): 2 857-2 873. |
[21] | TSUJI H, AYA K, UEGUCHI-TANAKA M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers[J]. The Plant Journal, 2006, 47(3): 427-444. |
[22] | GUO X L, HOU X M, FANG J, et al. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism[J]. The Plant Journal, 2013, 75(3): 403-416. |
[23] | DU W, CHENG J, CHENG Y, et al. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice[J]. Plant Biology, 2015, 17(6): 1 156-1 164. |
[24] | SINGH A, BANERJEE A, ROYCHOUDHURY A. Fluoride tolerance in rice is negatively regulated by the ‘stress-phytohormone’ abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid[J]. Protoplasma, 2022, 259(5): 1 331-1 350. |
[25] | LIU Y, FABG J, XU F, et al. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars[J]. Journal of Genetics and Genomics, 2014, 41(6): 327-338. |
[26] | 王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究[D]. 武汉: 华中农业大学, 2020. |
[27] | HUANG L, HONG Y B, ZHANG H J, et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016, 16: 1-18. |
[28] | ZHANG C Z, WANG H R, TIAN X J, et al. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination[J]. Nature Communications, 2024. https://doi.org/10.1038/s41467-024-46420-7. |
[29] | LI R Q, SONG Y, WANG X Q, et al. OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice[J]. Journal of Integrative Plant Biology, 2024, 66(4): 660-682. |
[30] | NAJEEB S, ALI J, MAHENDER A, et al. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination and early seedling vigor-related traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2020, 40: 1-25. |
[31] | HOU M Y, WANG C M, JING L, et al. Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2004, 31 (7): 701-706. |
[32] | 姜旋, 李辰昱, 毛婷. 水稻低温发芽性QTL的分子标记定位[J]. 武汉植物学研究, 2005, 23(3):216-220. |
[33] | 纪素兰, 江玲, 王益华, 等. 水稻种子耐低温发芽力的QTL定位及上位性分析[J]. 作物学报, 2008, 34(4):551-556. |
[34] | JI S L, JIANG L, WANG Y H, et al. Quantitative trait loci mapping and stability for low temperature germination ability of rice[J]. Plant Breeding, 2009, 128(4): 387-392. |
[35] | WANG Z F, WANG F H, ZHOU R, et al. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.)[J]. Euphytica, 2011, 181: 405-413. |
[36] | LI L F, LIU X, XIE K, et al. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2013, 126 (9): 2 313-2 322. |
[37] | XIE L X, TAN Z W, ZHOU Y, et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. Journal of Integrative Plant Biology, 2014, 56(8): 749-759. |
[38] | RANAWAKE A L, MANANGKIL O E, YOSHIDA S, et al. Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.)[J]. Biotechnology & Biotechnological Equipment, 2014, 28(6): 989-998. |
[39] | BORJAS A H, DE LEON T B, SUBUDHI P K. Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice[J]. Euphytica, 2016, 208: 251-264. |
[40] | JIANG S K, YANG C, XU Q, et al. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice[J]. International Journal of Molecular Sciences, 2020, 21(4): 1 284. |
[41] | WANG W J, HUANG R Z, WU G W, et al. Transcriptomic and QTL analysis of seed germination vigor under low temperature in weedy rice WR04-6[J]. Plants, 2023, 12(4): 871. |
[42] | MIURA K, LIN S Y, YANO M, et al. Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.)[J]. Breeding Science, 2001, 51(4): 293-299. |
[43] | 纪素兰, 江玲, 王益华, 等. 利用回交重组自交群体检测水稻耐低温发芽数量性状基因座[J]. 南京农业大学学报, 2007, 30(1):1-6. |
[44] | FUJINO K, SEKIGUCHI H, SATO T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2004, 108(5): 794-799. |
[45] | 巩迎军, 阮雯君, 荀星, 等. 水稻芽性状耐冷性的QTL分析[J]. 分子植物育种, 2009, 7(2):273-278. |
[46] | LI L Y, CHEN H P, MAO D H. Pyramiding of rapid germination loci from Oryza sativa cultivar ‘Xieqingzao B’ and cold tolerance loci from Dongxiang wild rice to increase climate resilience of cultivated rice[J]. Molecular Breeding, 2019, 39: 85. |
[47] | JIANG N F, SHI S L, SHI H, et al. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice[J]. Frontiers in Plant Science, 2017, 8: 1 223. |
[48] | 滕胜, 曾大力, 钱前, 等. 低温条件下水稻发芽力QTL的定位分析[J]. 科学通报, 2001(13): 1 104-1 108. |
[49] | 陈亮, 楼巧君, 孙宗修, 等. 水稻低温发芽力的QTL定位[J]. 中国水稻科学, 2006, 20(2):159-164. |
[50] | KIM N, JAN R, PARK J R, et al. QTL mapping and candidate gene analysis for seed germination response to low temperature in rice[J]. International Journal of Molecular Sciences, 2022, 23(13): 7 379. |
[51] | HAN L Z, ZHANG Y Y, QIAO Y L, et al. Genetic and QTL analysis for low-temperature vigor of germination in rice[J]. Acta Genetica Sinica, 2006, 33(11): 998-1 006. |
[52] | JIANG L, LIU S, HOU M, et al. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.)[J]. Field Crops Research, 2006, 98(1): 68-75. |
[53] | SATOH T, TEZUKA K, KAWAMOTO T, et al. Identification of QTLs controlling low-temperature germination of the East European rice (Oryza sativa L.) variety Maratteli[J]. Euphytica, 2016, 207: 245-254. |
[54] | PAN Z Y, TAN B, CAO G Y, et al. Integrative QTL identification, fine mapping and candidate gene analysis of a major locus qLTG3a for seed low-temperature germinability in rice[J]. Rice, 2021, 14: 1-16. |
[55] | 赵宇慧, 李秀秀, 陈倬, 等. 生物信息学分析方法Ⅰ:全基因组关联分析概述[J]. 植物学报, 2020, 55(6):715-732. |
[56] | PAN Y H, ZHANG H L, ZHANG D L, et al. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping[J]. PLoS One, 2015, 10(3): e0120590. |
[57] | 杨志涛. 多样性国际稻种低温、缺氧发芽力全基因组关联分析[D]. 长沙: 湖南农业大学, 2017. |
[58] | FUJINO K, OBARA M, SHIMIZU T, et al. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region[J]. Breeding Science, 2015, 65(5): 403-410. |
[59] | YANG T F, ZHOU L, ZHAO J L, et al. The candidate genes underlying a stably expressed QTL for low temperature germinability in rice (Oryza sativa L.)[J]. Rice, 2020, 13: 1-15. |
[60] | MAO F, WU D P, LU F F, et al. QTL mapping and candidate gene analysis of low temperature germination in rice (Oryza sativa L.) using a genome wide association study[J]. Peer J, 2022, 10: e13407. |
[61] | FUJINO K, SEKIGUCHI H, MATSUDA Y, et al. Molecular identification of a major quantitative trait locus, qltg3-1, controlling low-temperature germinability in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12 623-12 628. |
[62] | WANG X, ZOU B H, SHAO Q L, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany, 2018, 69(3): 413-421. |
[63] | PAN Y H, LIANG H F, GAO L J, et al. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice[J]. BMC Plant Biology, 2020, 20: 1-17. |
[64] | ZHANG J Y, LI X M, LIN H X, et al. Crop improvement through temperature resilience[J]. Annual Review of Plant Biology, 2019, 70: 753-780. |
[65] | LI J H, ZHANG Z Y, CHONG K, et al. Chilling tolerance in rice: past and present[J]. Journal of Plant Physiology, 2022, 268: 153 576. |
[66] | 熊英, 欧阳杰, 何永歆, 等. 芽期耐低温淹水的水稻种质的评价与筛选[J]. 杂交水稻, 2015, 30(4):54-58. |
[67] | 李鹏志, 黄好文, 滕祥勇, 等. 适宜吉林西部中轻度盐碱稻区直播品种筛选[J]. 农业与技术, 2020, 40(9):8-11. |
[68] | 来长凯, 殷延勃, 李锋. 宁夏水稻耐低温淹水萌发种质的筛选[J]. 宁夏农林科技, 2020, 61(7):1-5. |
[69] | 王晓航, 杨祥波, 张振宇, 等. 吉林省耐低温发芽水稻种质资源筛选与鉴定研究[J]. 农业开发与装备, 2021(10):169-170. |
[70] | 张晓丽, 陶伟, 陈雷, 等. 基于隶属函数值法的直播稻芽期和幼苗期耐低温淹水能力综合评价[J]. 南方农业学报, 2021, 52(1):78-85. |
[71] | 滕祥勇, 王金明, 李鹏志, 等. 耐低温低氧水稻种质资源筛选[J]. 种子, 2022, 41(7):58-64. |
[72] | 李殿平. 辽宁稻区水稻新品系抗寒性鉴定[J]. 辽宁农业科学, 2024(3):74-77. |
[73] | 郭震华, 周雪松, 王立楠, 等. 寒地水稻种质资源芽期耐冷鉴定研究[J]. 东北农业科学, 2024, 49(1):35-38. |
[74] | 王楚桃, 李贤勇, 何永歆, 等. 耐低温淹水发芽的水稻不育系神9A选育与应用[J]. 杂交水稻, 2019, 34(1):22-24. |
[1] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[2] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
[3] | 夏昕彤, 戴淑婷, 张萌恩, 王旭东, 何丽芝, 柳丹. 根表铁膜对水稻体内重金属迁移积累影响的研究进展[J]. 中国稻米, 2024, 30(6): 15-22. |
[4] | 陈书融, 何禹畅, 秦碧蓉, 王婕, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 金千瑜, 朱练峰. 稻田配施氮肥增效剂的应用研究进展[J]. 中国稻米, 2024, 30(6): 23-28. |
[5] | 王兴宇, 王静, 徐群, 章孟臣, 王珊, 孙燕飞, 魏兴华, 杨窑龙, 郭晓红, 冯跃. 利用高密度遗传图谱定位两种不同环境的水稻剑叶形态性状QTL差异[J]. 中国稻米, 2024, 30(6): 29-34. |
[6] | 陈丽, 孙建昌, 王昕. 基于BSA-seq法的水稻稻瘟病抗性基因定位[J]. 中国稻米, 2024, 30(6): 35-41. |
[7] | 刘琳帅, 王迪, 卞景阳, 孙兴荣, 邵凯, 韩冰, 来永才, 刘凯. 水稻耐苏打盐碱性鉴定方法的研究进展[J]. 中国稻米, 2024, 30(6): 42-48. |
[8] | 宋平原, 刘君权, 杨健, 周亚, 胡兵, 王小伟, 汪本福, 张枝盛, 程建平. 不同镉胁迫下施用纳米硅和活性硅对水稻的降镉效应[J]. 中国稻米, 2024, 30(6): 49-54. |
[9] | 张发丽, 王沁, 曾涛, 蒋明金, 何志旺, 张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响[J]. 中国稻米, 2024, 30(6): 55-59. |
[10] | 苏仙月, 蒋恬毅, 普雪, 蒋志豪, 刘涛, 文建成, 李丹丹, 徐笑宇. 云南水稻种质资源的遗传多样性与米糠脂质特性检测分析[J]. 中国稻米, 2024, 30(6): 66-73. |
[11] | 蔡炜, 秦缘, 陈浩田, 林晨语, 杨建昌, 张伟杨. 干湿交替灌溉和生物质炭施用对稻田碳汇与甲烷排放的影响及其机理研究进展[J]. 中国稻米, 2024, 30(6): 7-14. |
[12] | 王岩, 高美琦, 李荣平, 赵先丽, 张美玲, 卞景阳. Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究[J]. 中国稻米, 2024, 30(6): 74-81. |
[13] | 楼坚锋, 刘建. 杂交粳稻花优14种子质量快速预测方法研究[J]. 中国稻米, 2024, 30(6): 87-90. |
[14] | 江云珠, 楼光明, 杨帅, 李真, 姚佳蓉, 戴芬. 稻鳖综合种养关键技术及其产品质量安全管控分析[J]. 中国稻米, 2024, 30(6): 91-94. |
[15] | 阳湘林, 李建国, 陈丽群, 陈剑宝, 钟乐辉, 刘志清, 程乐根. 洞庭湖区水稻高效机械化育插秧技术集成研究与示范推广[J]. 中国稻米, 2024, 30(6): 95-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||