| [1] |
王才林, 张亚东, 赵凌, 等. 耐盐碱水稻研究现状、问题与建议[J]. 中国稻米, 2019, 25(1):1-6.
|
| [2] |
冷春旭, 郑福余, 赵北平, 等. 水稻耐碱性研究进展[J]. 生物技术通报, 2020, 36(11):103-111.
|
| [3] |
马国辉, 郑殿峰, 母德伟, 等. 耐盐碱水稻研究进展与展望[J]. 杂交水稻, 2024, 39(1):1-10.
|
| [4] |
GUAN B, ZHOU D, ZHANG H, et al. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature[J]. Journal of Arid Environments, 2009, 73(1): 135-138.
|
| [5] |
田蕾, 陈亚萍, 刘俊, 等. 粳稻种质资源芽期耐盐性综合评价与筛选[J]. 中国水稻科学, 2017, 31(6):631-642.
|
| [6] |
李婷, 朱长波, 李俊伟, 等. 海水胁迫对海稻86种子萌发和幼苗生长的影响[J]. 南方农业学报, 2018, 49(7):1 297-1 303.
|
| [7] |
ABDULLAH Z, KHAN A M, FLOWERS T J, et al. Causes of sterility in seed set of rice under salinity stress[J]. Journal of Agronomy and Crop Science, 2001, 187(1): 25-32.
|
| [8] |
韦还和, 葛佳琳, 张徐彬, 等. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46 (8):1 238-1 247.
|
| [9] |
杨娅坤, 赵飞, 刘建, 等. 盐碱胁迫对水稻的影响及其相关机制的研究进展[J]. 分子植物育种, 2022, 20(15):5 150-5 157.
|
| [10] |
SINGH R K, KOTA S, FLOWERS T J, et al. Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age[J]. Theoretical and Applied Genetics, 2021, 134(11): 3 495-3 533.
|
| [11] |
胡博文, 谷娇娇, 贾琰, 等. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响[J]. 华北农学报, 2019, 34(1):115-123.
|
| [12] |
周婵婵, 王术, 黄元财, 等. 不同水稻品种产量和品质对盐碱胁迫的响应[J]. 种子, 2017, 36(11):29-33.
|
| [13] |
周根友, 翟彩娇, 邓先亮, 等. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 32(2):146-154.
|
| [14] |
冷春旭, 闫平, 徐振华, 等. CRISPR/Cas基因编辑系统在水稻耐盐碱研究中的应用[J]. 黑龙江农业科学, 2022(8):52-56.
|
| [15] |
LIN H X, ZHU M Z, YANO M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theoretical and Applied Genetics, 2004, 108(2): 253-260.
|
| [16] |
BONILLA P, DVORAK J, MACKILL D, et al. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines[J]. Philippine Agricultural Scientist, 2002, 65(1): 68-76.
|
| [17] |
CHATTOPADHYAY K, MOHANTY S K, VIJAYAN J, et al. Genetic dissection of component traits for salinity tolerance at reproductive stage in rice[J]. Plant Molecular Biology Reporter, 2021, 39(2): 386-402.
|
| [18] |
REN Z H, GAO J P, LI L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1 141-1 146.
|
| [19] |
GANAPATI R K, NAVEED S A, ZAFAR S, et al. Saline-alkali tolerance in rice: Physiological response, molecular mechanism, and QTL identification and application to breeding[J]. Rice Science, 2022, 29(5): 412-434.
|
| [20] |
HE Y Q, YANG B, HE Y, et al. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice[J]. The Plant Journal, 2019, 97(6): 1 089-1 104.
|
| [21] |
WEI H, WANG X M, ZHANG Z P, et al. Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice[J]. National Science Review, 2024, 11(4): nwae043.
|
| [22] |
CUI Y C, LIN Y R, WEI H, et al. Identification of salt tolerance-associated presence-absence variations in the OsMADS56 gene through the integration of DEGs dataset and eQTL analysis[J]. The New Phytologist, 2024, 243(3): 833-838.
|
| [23] |
HUANG X Y, CHAO D Y, GAO J P, et al. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J]. Genes & Development, 2009, 23(15): 1 805-1 817.
|
| [24] |
LI S Y, ZHAO B R, YUAN D Y, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3 167-3 172.
|
| [25] |
LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291.
|
| [26] |
XIE G S, LIU S K, TETSUO T, et al. Cloning and expression of VB12-independent methionine synthase gene responsive to alkaline stress in rice[J]. Acta Genetica Sinica, 2002(12): 1 078-1 084.
|
| [27] |
GUO M X, WANG R C, WANG J, et al. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice[J]. PLoS One, 2014, 9(12): e112515.
|
| [28] |
李宁. 粳稻苗期耐碱性全基因组关联分析及候选基因挖掘[D]. 哈尔滨: 东北农业大学, 2019.
|
| [29] |
FERNANDO L H. The performance of salt resistant paddy, Pokkali in Ceylon[J]. Tropical Agriculturist, 1949, 105: 124-126.
|
| [30] |
王诗宇, 毛艇, 张丽丽, 等. 水稻耐盐育种研究进展[J]. 北方水稻, 2021, 51(4):48-51.
|
| [31] |
赵记伍, 雷传松, 刘永权, 等. 海稻86萌发期耐盐碱性特征初探[J]. 中国稻米, 2018, 24(3):87-92.
|
| [32] |
王子平, 阳标仁, 何登骥, 等. 耐盐水稻种质资源的筛选、创造和利用[J]. 湖南农业科学, 2014(15):29-31.
|
| [33] |
孙平勇, 张武汉, 舒服, 等. 水稻资源芽期和苗期耐盐碱性综合评价及耐盐基因分析[J]. 生物工程学报, 2022, 38(1):252-263.
|
| [34] |
任永泉, 金莲, 李景波, 等. 盐丰47高产优化栽培技术研究[J]. 北方水稻, 2008, 38(3):70-71.
|
| [35] |
张亚东, 朱镇, 陈涛, 等. 优质耐盐水稻新品种南粳盐1号的选育与特征特性[J]. 大麦与谷类科学, 2023, 40(1):67-70.
|
| [36] |
赵绍路, 庄东英, 岳红亮, 等. 耐盐水稻新品种中科盐4号的选育及应用[J]. 江苏农业科学, 2022, 50(18):303-308.
|
| [37] |
宋广树, 朱秀侠, 孙蕾, 等. 水稻品种长白9号的耐盐碱机理分析[J]. 东北农业科学, 2016, 41(2):5-8.
|
| [38] |
胡远艺, 谭炎宁, 刘小林, 等. 中国耐盐碱水稻产业化发展面临的问题与建议[J]. 杂交水稻, 2023, 38(5):1-5.
|
| [39] |
曹黎明, 程灿, 周继华, 等. 上海杂交粳稻产业发展与展望[J]. 中国种业, 2018(9):19-22.
|
| [40] |
SANTOSH KUMAR V V, VERMA R K, YADAV S K, et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010[J]. Physiology and Molecular Biology of Plants, 2020, 26(6): 1 099-1 110.
|
| [41] |
LIU X, WU D, SHAN T, et al. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice[J]. Plant Molecular Biology, 2020, 103(4): 545-560.
|