中国稻米 ›› 2024, Vol. 30 ›› Issue (5): 19-29.DOI: 10.3969/j.issn.1006-8082.2024.05.003
贾彬1,2(), 陈可2, 叶婵娟2, 郭洁2, 周新桥2, 陈达刚2, 刘娟2, 姜姝3, 刘冠明1,*(
), 刘传光2,*(
)
收稿日期:
2024-07-23
出版日期:
2024-09-20
发布日期:
2024-09-12
通讯作者:
*1065905078@qq.com;作者简介:
第一作者:aij0721@163.com
基金资助:
JIA Bin1,2(), CHEN Ke2, YE Chanjuan2, GUO Jie2, ZHOU Xinqiao2, CHEN Dagang2, LIU Juan2, JIANG Shu3, LIU Guanming1,*(
), LIU Chuanguang2,*(
)
Received:
2024-07-23
Published:
2024-09-20
Online:
2024-09-12
Contact:
*1065905078@qq.com;About author:
1st author: aij0721@163.com
摘要:
水稻叶片形态是决定理想株型的关键因素。根据“源库”理论,水稻叶片形态通过影响光合效率等“源”流影响水稻产量。其中,叶片大小、卷曲度以及叶倾角是植物整体株型和叶型中决定产量的关键农艺性状。近年来,已有许多控制叶片形态的基因被克隆与鉴定。水稻叶片发育过程可分为3个阶段:水稻叶原基的形成、极性的建立及维持、叶片的扩张。近年来,随着分子生物学技术的快速发展,众多调控水稻叶片形态的关键基因的重要功能已被阐明。譬如,PLA1、PLA2等基因在细胞分裂过程中的协同作用,NAL1、NAL9、NRL1、NRL2等基因在叶脉发育中的协同调控,SLL1、SRL2等基因对厚壁组织细胞结构的精细调控,OsPIN1、OsWOX3A等基因对植物激素的极性运输和分配等,共同构成了水稻叶片形态复杂调控网络的基石,为深入理解作物叶片形态发育的分子机制提供了重要线索。研究影响水稻叶片形态的分子机制,对于利用“源库”理论实现水稻的高产稳产具有重要生物学意义。
中图分类号:
贾彬, 陈可, 叶婵娟, 郭洁, 周新桥, 陈达刚, 刘娟, 姜姝, 刘冠明, 刘传光. 水稻叶形态的建成及分子机制研究进展[J]. 中国稻米, 2024, 30(5): 19-29.
JIA Bin, CHEN Ke, YE Chanjuan, GUO Jie, ZHOU Xinqiao, CHEN Dagang, LIU Juan, JIANG Shu, LIU Guanming, LIU Chuanguang. Progress in the Establishment of Rice Leaf Morphology and Molecular Mechanism[J]. China Rice, 2024, 30(5): 19-29.
[1] | 徐佳利, 周太东. 全球粮食危机与中国应对策略[J]. 国际经济合作, 2024, 40(2):32-43+92. |
[2] | HE P, WANG X W, ZHANG X B, et al. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa)[J]. BMC Plant Biology, 2018, 18: 1-11. |
[3] | 许娜, 徐铨, 徐正进, 等. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7):1735-1 746. |
[4] | 黄耀祥. 水稻超高产育种研究[J]. 作物杂志, 1990(4):1-2. |
[5] | 杨守仁. 水稻超高产育种的进展[J]. 作物杂志, 1990(2):1-2. |
[6] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997(6):4-9. |
[7] | 陈友订, 刘传光, 周新桥, 等. 华南双季超级籼稻动态株型育种理论研究与应用[J]. 广东农业科学, 2019, 46(9):8-17. |
[8] | 蔡晶, 王晓光, 季芝娟, 等. 水稻叶片形态的遗传与分子生物学研究进展[J]. 中国稻米, 2008, 14(6):5-11. |
[9] | SHI Z Y, WANG J, WAN X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226: 99-108. |
[10] | YUAN S, LI Y, PENG S B. Leaf lateral asymmetry in morphological and physiological traits of rice plant[J]. PLoS One, 2015, 10(6): e0129832. |
[11] | 黄海. 植物叶发育调控机理研究的进展[J]. 植物学通报, 2003(4):416-422. |
[12] | BAR M, ORI N. Leaf development and morphogenesis[J]. Development, 2014, 141(22): 4 219-4 230. |
[13] | GONZALEZ N, VANHAEREN H, INZÉD. Leaf size control: Complex coordination of cell division and expansion[J]. Trends in Plant Science, 2012, 17(6): 332-340. |
[14] | HAY A, TSIANTIS M. A KNOX family tale[J]. Current Opinion in Plant Biology, 2009, 12(5): 593-598. |
[15] | TSUDA K, KURATA N, OHYANAGI H, et al. Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice[J]. The Plant Cell, 2014, 26(9): 3 488-3 500. |
[16] | CHEN K, GUO T, LI X M, et al. NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice[J]. BMC Plant Biology, 2019, 19: 1-18. |
[17] | CHEN Z C, YAMAJI N, FUJII-KASHINO M, et al. A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice[J]. Plant Physiology, 2016, 171(1): 494-507. |
[18] | MA N, WANG Y, QIU S, et al. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension[J]. PLoS One, 2013. |
[19] | ISHIMOTO K, NOSAKA-TAKAHASHI M, KISHI-KABOSHI M, et al. Post-embryonic function of GLOBULAR EMBRYO 4 (GLE4)/OsMPK6 in rice development[J]. Plant Biotechnology, 2023, 40(1): 9-13. |
[20] | MIMURA M, ITOH J I. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development[J]. Rice, 2014, 7: 1-5. |
[21] | FANG J J, YUAN S J, LI C C, et al. Reduction of ATPase activity in the rice kinesin protein Stemless Dwarf 1 inhibits cell division and organ development[J]. The Plant Journal, 2018, 96(3): 620-634. |
[22] | KOMORISONO M, UEGUCHI-TANAKA M, AICHI I, et al. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J]. Plant Physiology, 2005, 138(4): 1 982-1 993. |
[23] | SHEN W Q, SUN J J, XIAO Z, et al. Narrow and Stripe Leaf 2 regulates leaf width by modulating cell cycle progression in rice[J]. Rice, 2023, 16(1): 20. |
[24] | ZHANG T, FENG P, LI Y F, et al. VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice[J]. Journal of Experimental Botany, 2018, 69(20): 4 791-4 804. |
[25] | XU P, ALI A, HAN B, et al. Current advances in molecular basis and mechanisms regulating leaf morphology in rice[J]. Frontiers in Plant Science, 2018, 9: 1 528. |
[26] | YAMAGUCHI T, NAGASAWA N, KAWASAKI S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa[J]. The Plant Cell, 2004, 16(2): 500-509. |
[27] | QI J, QIAN Q, BU Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1 947-1 959. |
[28] | ISHIWATA A, OZAWA M, NAGASAKI H, et al. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice[J]. Plant and Cell Physiology, 2013, 54(5): 779-792. |
[29] | UZAIR M, LONG H, ZAFAR S A, et al. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice[J]. Plant Physiology, 2021, 186(1): 497-518. |
[30] | HU J, ZHU L, ZENG D, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Molecular Biology, 2010, 73: 283-292. |
[31] | CAL A J, SANCIANGCO M, REBOLLEDO M C, et al. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought[J]. Plant, Cell & Environment, 2019, 42(5): 1 532-1 544. |
[32] | LI L, SHI Z Y, LI L, et al. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice[J]. Molecular Plant, 2010, 3(5): 807-817. |
[33] | ZOU L P, SUN X H, ZHANG Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011, 156(3): 1 589-1 602. |
[34] | HAN Y, YANG J L, WU H, et al. Improving rice leaf shape using CRISPR/Cas9-mediated genome editing of SRL1 and characterizing its regulatory network involved in leaf rolling through transcriptome analysis[J]. International Journal of Molecular Sciences, 2023, 24(13): 11 087. |
[35] | DAI M Q, HU Y F, ZHAO Y, et al. Regulatory networks involving YABBY genes in rice shoot development[J]. Plant Signaling & Behavior, 2007, 2(5): 399-400. |
[36] | XU Y, WANG Y H, LONG Q Z, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice[J]. Planta, 2014, 239: 803-816. |
[37] | ZHOU Y B, WANG D, WU T, et al. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice[J]. Molecular Breeding, 2018, 38: 1-13. |
[38] | LI C, ZOU X H, ZHANG C Y, et al. OsLBD3-7 overexpression induced adaxially rolled leaves in rice[J]. PLoS One, 2016, 11(6): e0156413. |
[39] | YANG C H, LI D Y, LIU X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2014, 14: 1-15. |
[40] | DENG P, JING W, CAO C J, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2210338119. |
[41] | WOO Y M, PARK H J, SU’UDI M, et al. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio[J]. Plant Molecular Biology, 2007, 65: 125-136. |
[42] | 徐静, 王莉, 钱前, 等. 水稻叶片形态建成分子调控机制研究进展[J]. 作物学报, 2013, 39(5):767-774. |
[43] | ZHANG G H, XU Q, ZHU X D, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell, 2009, 21(3): 719-735. |
[44] | WU R H, LI S B, HE S, et al. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3 392-3 411. |
[45] | ZHAO S S, ZHAO L, LIU F X, et al. NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice[J]. Journal of Integrative Plant Biology, 2016, 58(12): 983-996. |
[46] | YE Y F, WU K, CHEN J F, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J]. Rice, 2018, 11: 1-14. |
[47] | 李金玫, 吴斌, 张先文. 三种主要植物激素的合成代谢与信号转导调控水稻株高的研究进展[J]. 分子植物育种, 2024, 22(15): 5 132-5 140. |
[48] | FUJINO K, MATSUDA Y, OZAWA K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics, 2008, 279: 499-507. |
[49] | WALLER F, FURUYA M, NICK P. OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene[J]. Plant Molecular Biology, 2002, 50: 415-425. |
[50] | QIAO J Y, ZHANG Y J, HAN S L, et al. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice[J]. Frontiers in Plant Science, 2022, 13: 979 033. |
[51] | HUANG G Q, HU H, VAN DE MEENE A, et al. AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints[J]. The Plant Cell, 2021, 33(9): 3 120-3 133. |
[52] | LIU X, YANG C Y, MIAO R, et al. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling[J]. Rice, 2018, 11: 1-12. |
[53] | HUANG J, LI Z Y, ZHAO D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice[J]. Scientific Reports, 2016, 6(1): 29938. |
[54] | ZHANG S N, WANG S K, XU Y X, et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant, Cell & Environment, 2015, 38(4): 638-654. |
[55] | SONG Y L, YOU J, XIONG L Z. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis[J]. Plant Molecular Biology, 2009, 70: 297-309. |
[56] | NAKAMURA A, UMEMURA I, GOMI K, et al. Production and characterization of auxin‐insensitive rice by overexpression of a mutagenized rice IAA protein[J]. The Plant Journal, 2006, 46(2): 297-306. |
[57] | CHEN S H, ZHOU L J, XU P, et al. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling[J]. PLoS Genetics, 2018, 14(11): e1007829. |
[58] | BIAN H W, XIE Y K, GUO F, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa)[J]. New Phytologist, 2012, 196(1): 149-161. |
[59] | CHANG S, CHEN Y X, JIA S H, et al. Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches[J]. PLoS Genetics, 2020, 16(10): e1009157. |
[60] | XU Y X, XIAO M Z, LIU Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice[J]. Plant Molecular Biology, 2017, 94: 97-107. |
[61] | SAZUKA T, KAMIYA N, NISHIMURA T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J]. The Plant Journal, 2009, 60(2): 227-241. |
[62] | SHIMADA A, UEGUCHI‐TANAKA M, SAKAMOTO T, et al. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. The Plant Journal, 2006, 48(3): 390-402. |
[63] | CHO S H, KANG K, LEE S H, et al. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa)[J]. Journal of Experimental Botany, 2016, 67(6): 1 677-1 687. |
[64] | UEGUCHI-TANAKA M, FUJISAWA Y, KOBAYASHI M, et al. Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21): 11 638-11 643. |
[65] | WANG L, WANG Z, XU Y Y, et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice[J]. The Plant Journal, 2009, 57(3): 498-510. |
[66] | DAI M Q, ZHAO Y, MA Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant physiology, 2007, 144(1): 121-133. |
[67] | HONG Z, UEGUCHI-TANAKA M, SHIMIZU-SATO S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem[J]. The Plant Journal, 2002, 32(4): 495-508. |
[68] | ZHU X L, LIANG W Q, CUI X, et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein[J]. The Plant Journal, 2015, 82(4): 570-581. |
[69] | SAKAMOTO T, MORINAKA Y, OHNISHI T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2006, 24(1): 105-109. |
[70] | KHEW C Y, TEO C J, CHAN W S, et al. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice[J]. Journal of Plant Physiology, 2015, 182: 23-32. |
[71] | QIAO S L, SUN S Y, WANG L L, et al. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture[J]. The Plant Cell, 2017, 29(2): 292-309. |
[72] | ZHANG G, SONG X G, GUO H Y, et al. A small G protein as a novel component of the rice brassinosteroid signal transduction[J]. Molecular Plant, 2016, 9(9): 1 260-1 271. |
[73] | RUAN W Y, GUO M N, XU L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice[J]. The Plant Cell, 2018, 30(4): 853-870. |
[74] | FENG Z M, WU C Y, WANG C M, et al. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice[J]. Journal of Experimental Botany, 2016, 67(14): 4 241-4 253. |
[75] | ZHANG X Q, SUN J, CAO X F, et al. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice[J]. Plant Physiology, 2015, 169(3): 2 118-2 128. |
[76] | 喻梓轩, 刘新勇, 张健, 等. 生长素调控水稻生长发育的研究进展[J]. 中国稻米, 2024, 30(1):1-9. |
[77] | NARAMOTO S. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport[J]. Current Opinion in Plant Biology, 2017, 40: 8-14. |
[78] | WANG Q Q, MARCONI M, GUAN C M, et al. Polar auxin transport modulates early leaf flattening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2215569119. |
[79] | LI Y, WU L L, REN M Y, et al. Functional redundancy of OsPIN1 paralogous genes in regulating plant growth and development in rice[J]. Plant Signaling & Behavior, 2022, 17(1): 2 065 432. |
[80] | ZHENG M, WANG Y H, LIU X, et al. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice[J]. Journal of Experimental Botany, 2016, 67(11): 3 457-3 469. |
[81] | YOSHIKAWA T, ITO M, SUMIKURA T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes[J]. The Plant Journal, 2014, 78(6): 927-936. |
[82] | LUO X G, ZHENG J S, HUANG R Y, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice[J]. Plant Cell Reports, 2016, 35: 2 423-2 433. |
[83] | TONG H N, LIU L C, JIN Y, et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice[J]. The Plant Cell, 2012, 24(6): 2 562-2 577. |
[84] | WU Q, LI D Y, LI D J, et al. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2015, 6: 833. |
[85] | LI H B, FENG B H, LI J C, et al. RGA1 alleviates low‐light‐repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant, Cell & Environment, 2023, 46(4): 1 363-1 383. |
[86] | JE B I, PIAO H L, PARK S J, et al. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice[J]. The Plant Cell, 2010, 22(6): 1 777-1 791. |
[87] | GAN L J, WU H, WU D P, et al. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice[J]. Plant Science, 2015, 241: 238-245. |
[88] | WANG Y, SUN S Y, ZHU W J, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching[J]. Developmental Cell, 2013, 27(6): 681-688. |
[89] | LEE S C, KIM S J, HAN S K, et al. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice[J]. Journal of Plant Physiology, 2017, 214: 116-122. |
[90] | JANG S, CHO J Y, DO G R, et al. Modulation of rice leaf angle and grain size by expressing OsBCL1 and OsBCL2 under the control of OsBUL1 promoter[J]. International Journal of Molecular Sciences, 2021, 22(15): 7 792. |
[1] | 付第慧, 邢志鹏, 程爽, 王忠祥, 陈飞扬, 黄志成, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 水稻覆膜栽培技术应用研究现状与展望[J]. 中国稻米, 2024, 30(6): 1-6. |
[2] | 侯凡, 陈佑源, 沈峰平, 尚子帅, 孙一鸣, 湛立伟. 籼粳亚种间杂交稻新品种华中优9326的丰产稳产性及适应性分析[J]. 中国稻米, 2024, 30(6): 110-113. |
[3] | 夏昕彤, 戴淑婷, 张萌恩, 王旭东, 何丽芝, 柳丹. 根表铁膜对水稻体内重金属迁移积累影响的研究进展[J]. 中国稻米, 2024, 30(6): 15-22. |
[4] | 陈书融, 何禹畅, 秦碧蓉, 王婕, 田文昊, 朱春权, 孔亚丽, 曹小闯, 张均华, 金千瑜, 朱练峰. 稻田配施氮肥增效剂的应用研究进展[J]. 中国稻米, 2024, 30(6): 23-28. |
[5] | 王兴宇, 王静, 徐群, 章孟臣, 王珊, 孙燕飞, 魏兴华, 杨窑龙, 郭晓红, 冯跃. 利用高密度遗传图谱定位两种不同环境的水稻剑叶形态性状QTL差异[J]. 中国稻米, 2024, 30(6): 29-34. |
[6] | 陈丽, 孙建昌, 王昕. 基于BSA-seq法的水稻稻瘟病抗性基因定位[J]. 中国稻米, 2024, 30(6): 35-41. |
[7] | 刘琳帅, 王迪, 卞景阳, 孙兴荣, 邵凯, 韩冰, 来永才, 刘凯. 水稻耐苏打盐碱性鉴定方法的研究进展[J]. 中国稻米, 2024, 30(6): 42-48. |
[8] | 宋平原, 刘君权, 杨健, 周亚, 胡兵, 王小伟, 汪本福, 张枝盛, 程建平. 不同镉胁迫下施用纳米硅和活性硅对水稻的降镉效应[J]. 中国稻米, 2024, 30(6): 49-54. |
[9] | 张发丽, 王沁, 曾涛, 蒋明金, 何志旺, 张恒栋. 施用菌渣对水稻产量、直链淀粉和氨基酸含量的影响[J]. 中国稻米, 2024, 30(6): 55-59. |
[10] | 苏仙月, 蒋恬毅, 普雪, 蒋志豪, 刘涛, 文建成, 李丹丹, 徐笑宇. 云南水稻种质资源的遗传多样性与米糠脂质特性检测分析[J]. 中国稻米, 2024, 30(6): 66-73. |
[11] | 蔡炜, 秦缘, 陈浩田, 林晨语, 杨建昌, 张伟杨. 干湿交替灌溉和生物质炭施用对稻田碳汇与甲烷排放的影响及其机理研究进展[J]. 中国稻米, 2024, 30(6): 7-14. |
[12] | 王岩, 高美琦, 李荣平, 赵先丽, 张美玲, 卞景阳. Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究[J]. 中国稻米, 2024, 30(6): 74-81. |
[13] | 楼坚锋, 刘建. 杂交粳稻花优14种子质量快速预测方法研究[J]. 中国稻米, 2024, 30(6): 87-90. |
[14] | 江云珠, 楼光明, 杨帅, 李真, 姚佳蓉, 戴芬. 稻鳖综合种养关键技术及其产品质量安全管控分析[J]. 中国稻米, 2024, 30(6): 91-94. |
[15] | 阳湘林, 李建国, 陈丽群, 陈剑宝, 钟乐辉, 刘志清, 程乐根. 洞庭湖区水稻高效机械化育插秧技术集成研究与示范推广[J]. 中国稻米, 2024, 30(6): 95-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||